Optical, Functional Impact and Antimicrobial of Chitosan/Phosphosilicate/Al2O3 Nanosheets

  • Amany M. El Nahrawy
  • A. M. MansourEmail author
  • Ali B. Abou Hammad
  • R. S. Ibrahim
  • Amal M. Abouelnaga
  • Mohamed S. Abdel-Aziz


A nanosheets containing chitosan (CS) and bioactive P2O5:SiO2/Al2O3 were prepared by the sol–gel method. The nanosheets were characterized by XRD, FE-SEM, FT-IR and optical studies. FE-SEM displayed a nano-clustering and dense structure with promising morphology. The optical results reveal that the incorporation of Al2O3 nanoparticles within the phosphosilicate/chitosan system was successfully cross-linked and create a change in the internal electronic structure. The optical band gap increased from 3.6 to 3.8 eV with increasing Al2O3 content. The antimicrobial effectiveness for chitosan/phosphosilicate/(0.6, 0.9 mol.%)Al2O3 nanosheets exhibited remarkable enhancement in the antimicrobial activities that candidates it for spectroscopic and bio-applications.


Chitosan–silicate Composites Sol–gel method Optical band gap Antimicrobial behavior 


Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    D.D.L. Chung, Composite Materials: Functional Materials for Modern Technologies (Springer, London, 2002).Google Scholar
  2. 2.
    A.A. Higazy, H. Afifi, A.H. Khafagy, M.A. El-Shahawy, A.M. Mansour, Ultrasonics 44, e1439 (2006)PubMedCrossRefGoogle Scholar
  3. 3.
    P. M. Visakh, G. Markovic, and D. Pasquini, Recent Developments in Polymer Macro, Micro and Nano Blends: Preparation and Characterisation (Woodhead Publishing, New Delhi, 2016).Google Scholar
  4. 4.
    A. Thabet, Y.A. Mobarak, M. Bakry, A. Thabet, Y.A. Mobarak, M. Bakry, J. Eng. Sci. 39, 377 (2011)Google Scholar
  5. 5.
    S.C.M. Fernandes, C.S.R. Freire, A.J.D. Silvestre, C. Pascoal Neto, A. Gandini, L.A. Berglund, L. Salmén, Carbohydr. Polym. 81, 394 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Tanahashi, Materials (Basel) 3, p. 1593, (2010).CrossRefGoogle Scholar
  7. 7.
    R. Asmatulu, W.S. Khan, R.J. Reddy, M. Ceylan, Polym. Compos. 36, 1565 (2015)CrossRefGoogle Scholar
  8. 8.
    R. J. Reddy, Preparation, Characterization and Properties of Injection Molded Graphene Nanocomposites, Wichita State University, 2010.Google Scholar
  9. 9.
    W. S. Khan, N. N. Hamadneh, and W. A. Khan, in Sci. Appl. Tailored Nanostructures, ed. by P. Di Sia (One Central Press (OCP), Cheshire, 2016), p. 50.Google Scholar
  10. 10.
    G. Crini, P.M. Badot, Prog. Polym. Sci. 33, 399 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Prog. Polym. Sci. 36, 981 (2011)CrossRefGoogle Scholar
  12. 12.
    T.S. Trung, W.W. Thein-Han, N.T. Qui, C.H. Ng, W.F. Stevens, Bioresour. Technol. 97, 659 (2006)PubMedCrossRefGoogle Scholar
  13. 13.
    A.F. Martins, S.P. Facchi, H.D.M. Follmann, A.G.B. Pereira, A.F. Rubira, E.C. Muniz, Int. J. Mol. Sci. 15, 20800 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    P. Dutta, J. Dutta, V. Tripathi, J. Sci. Ind. Res. 63, 20 (2008)Google Scholar
  15. 15.
    K. Kurita, K. Tomita, T. Tada, S.I. Nishimura, S. Ishii, Polym. Bull. 30, 429 (1993)CrossRefGoogle Scholar
  16. 16.
    T.J. Gutiérrez, Chitosan (Wiley, Hoboken, 2017), pp. 183–232.CrossRefGoogle Scholar
  17. 17.
    A.M. Youssef, A.M. El-Nahrawy, A.B. Abou Hammad, Int. J. Biol. Macromol. 97, 561 (2017)PubMedCrossRefGoogle Scholar
  18. 18.
    A.M. Elnahrawy, Y.S. Kim, A.I. Ali, J. Alloys Compd. 676, 432 (2016)CrossRefGoogle Scholar
  19. 19.
    M.W. Alam, F.A. Dar, F. Mohmed, A. Aljaafari, O. Saber, Mater. Express 9, 653 (2019)CrossRefGoogle Scholar
  20. 20.
    N. Farhadian, R. Akbarzadeh, M. Pirsaheb, T.C. Jen, Y. Fakhri, A. Asadi, Int. J. Biol. Macromol. 132, 360 (2019)PubMedCrossRefGoogle Scholar
  21. 21.
    C. Tang, N. Chen, Q. Zhang, K. Wang, Q. Fu, X. Zhang, Polym. Degrad. Stab. 94, p. 124, (2009).CrossRefGoogle Scholar
  22. 22.
    J.W. Rhim, S.I. Hong, H.M. Park, P.K.W. Ng, J. Agric. Food Chem. 54, 5814 (2006)PubMedCrossRefGoogle Scholar
  23. 23.
    G. Di Carlo, A. Curulli, R.G. Toro, C. Bianchini, T. De Caro, G. Padeletti, D. Zane, G.M. Ingo, Langmuir 28, 5471 (2012)PubMedCrossRefGoogle Scholar
  24. 24.
    X. Liu, Q. Hu, Z. Fang, X. Zhang, B. Zhang, Langmuir 25, 3 (2009)PubMedCrossRefGoogle Scholar
  25. 25.
    H.M.C.d. Azeredo, Food Res. Int. 42, 1240 (2009)CrossRefGoogle Scholar
  26. 26.
    F. Mohanty, S.K. Swain, in Nanotechnol. Appl. Food Flavor, Stability, Nutr. Saf. (Pergamon, 2017), pp. 363–379Google Scholar
  27. 27.
    T. Coradin, J. Allouche, M. Boissiere, J. Livage, Curr. Nanosci. 2, 219 (2006)CrossRefGoogle Scholar
  28. 28.
    B.P. Bastakoti, Y. Li, M. Imura, N. Miyamoto, T. Nakato, T. Sasaki, Y. Yamauchi, Angew. Chem. Int. Ed. 54, p. 4222, (2015).CrossRefGoogle Scholar
  29. 29.
    A.B. Abou Hammad, A.M. Elnahrawy, A.M. Youssef, A.M. Youssef, Int. J. Biol. Macromol. 125, 503 (2019)PubMedCrossRefGoogle Scholar
  30. 30.
    A.M. El Nahrawy, A.M. Mansour, A.B. Abou, Hammad, A.R. Wassel, Mater. Res. Express 6, 016404 (2019)CrossRefGoogle Scholar
  31. 31.
    A. Tiraferri, P. Maroni, D. Caro, Rodríguez, M. Borkovec, Langmuir 30, 4980 (2014)PubMedCrossRefGoogle Scholar
  32. 32.
    S.H. Sohrabnezhad, M.J. Mehdipour, Moghaddam, T. Salavatiyan, Spectrochim. Acta Part A 125, p. 73, (2014).CrossRefGoogle Scholar
  33. 33.
    A. Naz, S. Arun, S.S. Narvi, M.S. Alam, A. Singh, P. Bhartiya, P.K. Dutta, Int. J. Biol. Macromol. 110, 215 (2018)PubMedCrossRefGoogle Scholar
  34. 34.
    S.A. Gaware, K.A. Rokade, S.N. Kale, J. Drug Deliv. Sci. Technol. 49, 345 (2019)CrossRefGoogle Scholar
  35. 35.
    A.M. ElNahrawy, A.B. AbouHammad, Int. J. PharmTech Res. 9, p. 16, (2016).Google Scholar
  36. 36.
    T. Baran, A. Menteş, Int. J. Biol. Macromol. 79, 542 (2015)PubMedCrossRefGoogle Scholar
  37. 37.
    S. Zarei, N. Farhadian, R. Akbarzadeh, M. Pirsaheb, A. Asadi, Z. Safaei, Int. J. Biol. Macromol. 145, pp. 926–935, (2019).PubMedCrossRefGoogle Scholar
  38. 38.
    M.M. Elokr, F. Metawe, A.M. El-Nahrawy, B.A.A. Osman, Int. J. ChemTech Res. 9, 228 (2016)Google Scholar
  39. 39.
    A.N. Alias, Z.M. Zabidi, A.M.M. Ali, M.K. Harun, Int. J. Appl. Sci. Technol. 3, 11 (2013)Google Scholar
  40. 40.
    A.A.M.A.M.M. Farag, A.M.M. Mansour, A.H.H. Ammar, M.A.A. Rafea, Synth. Met. 161, 2135 (2011)CrossRefGoogle Scholar
  41. 41.
    N. Hassan, A.M.M. Mansour, N. Roushdy, A.A.M.A.M. Farag, W.G.G. Osiris, Optik (Stuttg) 158, p. 1255, (2018).CrossRefGoogle Scholar
  42. 42.
    A. Ziashahabi, R. Poursalehi, Procedia Mater. Sci. 11, 743 (2015)CrossRefGoogle Scholar
  43. 43.
    Y. Liu, Z. Xu, M. Yin, H. Fan, W. Cheng, L. Lu, Y. Song, J. Ma, X. Zhu, Nanoscale Res. Lett. 10, 374 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    R. Zhao, T. Zhai, Z. Wang, Y. Wang, D. Liu, Appl. Phys. B 92, p. 585, (2008).CrossRefGoogle Scholar
  45. 45.
    T. Siddaiah, P. Ojha, N.O.G.V.R. Kumar, C. Ramu, T. Siddaiah, P. Ojha, N.O.G.V.R. Kumar, C. Ramu, Mater. Res. 21, e20170987 (2018)CrossRefGoogle Scholar
  46. 46.
    A.A.M. Farag, A.M. Mansour, A.H. Ammar, M.A. Rafea, A.M. Farid, J. Alloys Compd. 513, 404 (2012)CrossRefGoogle Scholar
  47. 47.
    T.A. Phung Hai, R. Sugimoto, RSC Adv. 8, 7005 (2018)CrossRefGoogle Scholar
  48. 48.
    A. Yoshikawa, H. Matsunami, Y. Nanishi, Wide Bandgap Semicond. Fundam. Prop. Mod. Photonic Electron Devices (Springer, Berlin, 2007), pp. 1–24.Google Scholar
  49. 49.
    V.S. Vavilov, Uspekhi Fiz. Nauk 164, 287 (1994)CrossRefGoogle Scholar
  50. 50.
    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)CrossRefGoogle Scholar
  51. 51.
    H.D. Chandrashekara, B. Angadi, R. Shashidhar, L.C.S. Murthy, P. Poornima, in Mater. Today Proc. (Elsevier, 2016), pp. 2027–2034Google Scholar
  52. 52.
    K.R. Rajesh, C.S. Menon, Mater. Lett. 53, 329 (2002)CrossRefGoogle Scholar
  53. 53.
    T.G. Partha, R. Rathinamoorthy, T. Ramachandran, J. Text. Apparel Technol. Manag. 9(3), pp. 1–15, (2000).Google Scholar
  54. 54.
    L.F. Zemljič, T. Tkavc, A. Vesel, O. Šauperl, Appl. Surf. Sci. 265, 697 (2013)CrossRefGoogle Scholar
  55. 55.
    S. Shankar, J.W. Rhim, Food Hydrocoll. 82, 116 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Solid-State Physics Department, Physics Research DivisionNational Research CentreGizaEgypt
  2. 2.Center of Microelectronics in ProvenceMines Saint-EtienneGardanneFrance
  3. 3.Physics Department, Science CollegeJazan UniversityJazanSaudi Arabia
  4. 4.Microbial Chemistry DepartmentNational Research CentreGizaEgypt

Personalised recommendations