Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Influence of Heat Treatment Temperature on the Microstructure Evolution of Poly(vinylborosiloxane) Derived Ceramics

  • 23 Accesses


Polycondensation of boric acid and vinyltriethoxysilane in 1:2, 1:1.5 and 1:1 mole ratio in diglyme at 83–87 °C for 3 h using hydrochloric acid as catalyst afforded vinylfunctionalized borosiloxane oligomers soluble in the reaction medium. Complete removal of ethanol, the by-product, and diglyme rendered the oligomers intractable due to the advancement of polycondensation. They were characterized by FTIR and TGA and converted to ceramics by heat treatment at 900 °C, 1500 °C and 1650 °C in argon atmosphere. The ceramics obtained were characterized by IR, Raman, 13C-and 29Si-solid state NMR spectroscopy and XRD. These studies infer the formation of SiOC/SiBOC glass on pyrolysis of these oligomers at 900 °C and onset of formation of β-SiC at 1500 °C. On further heat treatment at 1650 °C, complete conversion of the ceramic to a mixture of α and β-SiC was observed along with the presence of diamond like carbon phases.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    J. Bill, F. Aldinger, Precursor-Derived Covalent Ceramics, in Precursor-Derived Deramics, ed. by J. Bill, F. Wakai, F. Aldinger (Wiley-VCH, Weinheim, Federal Republic of Germany, 1999), pp. 32–51

  2. 2.

    E. Ionescu, H.J. Kleebe, R. Riedel, Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. Chem. Soc. Rev. 41, 5032 (2012)

  3. 3.

    P. Colombo, G. Mera, R. Riedel, G.D. Soraru, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am. Ceram. Soc. 93, 1805–1837 (2010)

  4. 4.

    P. Colombo, R. Raj, M. Singh, Advances in Polymer Derived Ceramics and Composites: Ceramic Transactions (John Wiley & Sons, New Jersey, 2010)

  5. 5.

    P. Colombo, R. Riedel, G.D. Soraru, H.J. Kleebe, Polymer Derived Ceramics: From Nano-Structure to Applications (Destech Publications Inc, Lancaster, 2010)

  6. 6.

    I. Emanuel, G. Mera, R. Riedel, Polymer-Derived Ceramics (PDCs): Materials Design Towards Applications at Ultrahigh-Temperatures and in Extreme Environments: In Nanotechnol. Concepts, Methodol. Tools, Appl. IGI Global, 2014, pp. 1108–1139.

  7. 7.

    G. Mera, M. Gallei, S. Bernard, E. Ionescu, Ceramic nanocomposites from tailor-made preceramic polymers. Nanomaterials 5, 468–540 (2015)

  8. 8.

    J.O.B. Rivera, M.H. Talou, Y.M.X.H. Hung, M.A. Camerucci, Study of a silicon-based preceramic for the processing of polymer-derived ceramics. J. Sol-Gel Sci. Tech. 91, 446–460 (2019)

  9. 9.

    C. Stabler, E. Ionescu, M. Graczyk-Zajac, I. Gonzalo-Juan, R. Riedel, Silicon oxycarbide glasses and glass-ceramics: “All-Rounder” materials for advanced structural and functional applications. J. Am. Ceram. Soc. 101, 4817–4856 (2018)

  10. 10.

    Y. Blum, G.D. Sorarù, A.P. Ramaswamy, D. Hui, S.M. Carturan, Controlled mesoporosity in SiOC via chemically bonded polymeric “Spacers”. J. Am. Ceram. Soc. 96, 2785–2792 (2013)

  11. 11.

    A.D. Chomel, P. Dempsey, J. Latournerie, D. Hourlier-Bahloul, U.A. Jayasooriya, Gel to glass transformation of methyltriethoxysilane: a silicon oxycarbide glass precursor investigated using vibrational spectroscopy. Chem. Mater. 17, 4468–4473 (2005)

  12. 12.

    B.V.M. Kumar, Y.W. Kim, Processing of polysiloxane-derived porous ceramics: a review. Sci. Technol. Adv. Mater. 11, 1–16 (2010)

  13. 13.

    D. Erb, K. Lu, Effect of additive structure and size on SiO2 formation in polymer-derived SiOC ceramics. J. Am. Ceram. Soc. 101, 5378–5388 (2018)

  14. 14.

    J. Ma, L. Shi, Y. Shi, S. Luo, J. Xu, Pyrolysis of polymethylsilsesquioxane. J. Appl. Polym. Sci. 85, 1077–1086 (2002)

  15. 15.

    M. Sitarz, C. Czosnek, P. Jeleń, M. Odziomek, Z. Olejniczak, M. Kozanecki, J.F. Janik, SiOC glasses produced from silsesquioxanes by the aerosol-assisted vapor synthesis method, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 112, 440–445 (2013)

  16. 16.

    P.R. Aravind, G.D. Soraru, Porous silicon oxycarbide glasses from hybrid ambigels. Micro. Meso. Mat. 142, 511–517 (2011)

  17. 17.

    M.A. Schiavon, C. Gervais, F. Babonneau, G.D. Soraru, Crystallization behavior of novel silicon boron oxycarbide glasses. J. Am. Ceram. Soc. 87, 203–208 (2004)

  18. 18.

    D. Devapal, S. Packirisamy, P. V. Prabhakaran, K. J. Sreejith, A. Paul, A. Painuly, Process for solventless synthesis of resinous borosiloxane oligomer precursors for ceramics, Indian Patent 277874 (2016).

  19. 19.

    T.S. Sasikala, D. Thomas, D. Devapal, Studies on evolution of nano SiC ceramics from allylborosiloxane. Ceram. Int. 41, 1618–1626 (2016)

  20. 20.

    T.S. Sasikala, D. Devapal, Studies on high temperature evolution of polymer derived nano SiC ceramics. Mater. Sci. Forum 830, 493–497 (2015)

  21. 21.

    D. Devapal, S. Packirisamy, K.J. Sreejith, P.V. Ravindran, B.K. George, Synthesis, characterization and ceramic conversion studies of borosiloxane oligomers from phenyltrialkoxysilanes. J. Inorg. Organomet. Polym. 20, 666–674 (2010)

  22. 22.

    K.J. Sreejith, P.V. Prabhakaran, K.P. Laly, R. Dimple, S. Packirisamy, Vinyl-functionalized poly(borosiloxane) as precursor for SiC/SiBOC nanocomposite. Ceram. Int. 42, 15285–15293 (2016)

  23. 23.

    S. Rubinsztajn, New facile process for synthesis of borosiloxane resins. J. Inorg. Organomet. Polym. Mater. 24, 1092–1095 (2014)

  24. 24.

    V. Vijay, S. Bhuvaneswari, V.M. Biju, R. Devasia, Influence of titanium silicide active filler on the microstructure evolution of borosiloxane-derived Si–B–O–C ceramics. J. Ceram. Sci. Tech. 07, 97–106 (2016)

  25. 25.

    V. Vijay, V.M. Biju, R. Devasia, Active filler controlled polymer pyrolysis—a promising route for the fabrication of advanced ceramics. Ceram. Int. 42, 15592–15596 (2016)

  26. 26.

    A. Klonczynski, G. Schneider, R. Riedel, R. Theissmann, Influence of boron on the microstructure of polymer derived SiCO ceramics. Adv. Eng. Mater. 6, 64–68 (2004)

  27. 27.

    A.H. Tavakoli, R. Campostrini, C. Gervais, F. Babonneau, J. Bill, G.D. Sorarù, A. Navrotsky, Energetics and structure of polymer-derived Si–(B–)O–C glasses: effect of the boron content and pyrolysis temperature. J. Am. Ceram. Soc. 77, 303–309 (2014)

  28. 28.

    S. Hoshii, A. Kojima, S. Otani, Mechanical properties and oxidation resistivity of carbon fiber/ceramic composites prepared from borosiloxane. J. Mat. Res. 11, 2536–2540 (1996)

  29. 29.

    R.L. Siqueira, I.V.P. Yoshida, L.C. Pardini, M.A. Schiavon, Poly(borosiloxanes) as precursors for carbon fiber ceramic matrix composites. Mat. Res. 10, 147–151 (2007)

  30. 30.

    K. J. Sreejith, S. Packirisamy, Phenylborosiloxane-Derived Ceramic Matrix Composites, High Temperature Ceramic Materials and Composites, Eds. W. Krenkel, J. Lamon. Aviso VerlagsgesellschaftmbH, Berlin, 2010, pp. 712–718.

  31. 31.

    B. Swaminathan, A. Painuly, S. K. Manwatkar, S. Packirisamy, Preceramic polymer derived C/CSiC and C/C-SiBCO composites for high temperature applications in High Temperature Ceramic Materials and Composites, Eds. W. Krenkel and J. Lamon. AvisoVerlagsgesellschaftmbH, Berlin, 2010, pp. 724–730.

  32. 32.

    K.J. Sreejith, A. Painuly, B.V. Rajasekhar, P.P. Shyin, V. Vijay, R. Devasia, P.V. Prabhakaran, S. Packirisamy, A process for polymer-derived Cf/SiBOC ceramic matrix composites, Indian Patent Appl. 201841020417 (2018).

  33. 33.

    V. Vijay, S. Siva, K.J. Sreejith, P.V. Prabhakaran, R. Devasia, Effect of boron inclusion in SiOC polymer derived matrix on the mechanical and oxidation resistance properties of fiber reinforced composites. Mat. Chem. Phys. 205, 269–277 (2018)

  34. 34.

    S.G. Nair, K.J. Sreejith, S. Packirisamy, T.G. Babu, R. Devasia, Polymer derived PyC interphase coating for C/SiBOC composites. Mat. Chem. Phys. 204, 179–186 (2018)

  35. 35.

    R. Devasia, S. G. Nair, K. J. Sreejith, S. Packirisamy, Fibre-reinforced ceramic matrix composite material with polymer derived interphase coating. Indian Patent No. 299956 (2018).

  36. 36.

    G. T. Burns, G. A. Zank, High density silicon carbide sintered bodies from borosiloxanes, US Patent 5,112,779 (1992).

  37. 37.

    D. Devapal, M. P. Gopakumar, P. V. Prabhakaran, S. Packirisamy, A process for preparation of silicon carbide coated carbon nano-materials using polyborosiloxanes, Indian Patent Appl. 2017–41024214 (2017)

  38. 38.

    R.P. Alonso, G.D. Soraru, Synthesis and characterization of hybrid borosiloxane gels as precursors for Si–B–O–C fibers. J. Sol-Gel Sci. Tech. 43, 313–319 (2007)

  39. 39.

    H.W. Bai, G. Wen, X.X. Huang, Z.X. Han, B. Zhong, Z.X. Hu, X.D. Zhang, Synthesis and structural characterization of SiBOC ceramic fibers derived from single-source polyborosiloxane. J. Eur. Ceram. Soc. 31, 931–940 (2011)

  40. 40.

    A. Tamayo, R.P. Alonso, F. Rubio, J. Rubio, J.L. Oteo, Synthesis and characterization of boron silicon oxycarbide glass fibers. J Non-Cryst Solids 358, 155–162 (2012)

  41. 41.

    K.J. Sreejith, T. Fey, P. Greil, Siliconboronoxycarbide (SiBOC) foam from methyl borosiloxane. Ceram. Trans. 243, 47–60 (2014)

  42. 42.

    N. Tohge, A. Matsuda, T. Minami, Coating films of 20B2030.80Si02 by the sol-gel method, J. Am. Ceram. Soc., 70 (1987) C13–C15.

  43. 43.

    M.A. Villegas, J.M.F. Navarro, Characterization of B2O3–SiO2 glasses prepared via sol-gel. J. Mat. Sci. 23, 2464–2478 (1988)

  44. 44.

    Y. Abe, T. Gunji, Y. Kimata, M. Kuramata, A. Kasgoz, T. Misono, Preparation of polymetalloxanes as a precursor for oxide ceramics. J. Non-Cryst. Solids 121, 21–25 (1990)

  45. 45.

    A. Kasgoz, T. Misono, Y. Abe, Preparation and properties of polyborosiloxanes as precursors for borosilicate formation of Si02–B203 gel fibers and oxides by the sol–gel method using tetraacetoxysilane and borontri-n-butoxide, J. Polym. Sci. A, Polym. Chem. 32 (1994) 1049–1056.

  46. 46.

    G. Ambadas, S. Packirisamy, K.N. Ninan, Synthesis, characterization and thermal properties of boron and silicon containing preceramic oligomers. J. Mat. Sci. Lett. 21, 1003–1005 (2002)

  47. 47.

    S. Packirisamy, G. Ambadas, P.K. Narendranath, K. N. Ninan, A process for the synthesis of boron and silicon containing preceramic oligomers. Indian Patent No. 208583(2007).

  48. 48.

    D. Devapal, Studies on inorganic and organometallic polymers (Ph.D. Thesis), Mahatma Gandhi University, India, 2007.

  49. 49.

    P. V. Prabhakaran, Studies on non-oxide ceramics derived from polymers and their applications (Ph.D. Thesis), University of Kerala, India, 2008.

  50. 50.

    K. J. Sreejith, Polymer derived ceramics and their high temperature applications (Ph.D. Thesis), University of Kerala, India, 2010.

  51. 51.

    G. D. Soraru, F. Babonneau, C. Gervais, N. Dallabona, Hybrid RSiO1.5/B2O3 gels from modified silicon alkoxides and boric acid, J. Sol–Gel Sci. Technol. 18 (2000) 11–19.

  52. 52.

    F. D. Snell, C. L. Hilton (eds.), in Encyclopedia of Industrial Chemical Analysis, vol. 7 (Interscience Publishers, New York, 1968, pp. 324.

  53. 53.

    C. Gervais, F. Babonneau, N. Dallabonna, G.D. Soraru, Sol–gel-derived silicon-boron oxycarbide glasses containing mixed silicon oxycarbide (SiCxO4_x) and Boron Oxycarbide (BCyO3_y) Units. J. Am. Ceram. Soc. 84, 2160–2164 (2001)

  54. 54.

    R.A. Mantz, R.F. Jones, K.P. Chaffee, J.D. Lichtenhan, J.W. Gilman, M.K. Ismail, M.J. Burmeister, Thermolysis of polyhedraloligomeric silsesquioxane (POSS) macromers and POSS−siloxanecopolymers. Chem. Mater. 8, 1250–1259 (1996)

  55. 55.

    G.D. Soraru, F. Babonneau, S. Maurina, J. Vicens, Sol-gel synthesis of SiBOC glasses. J. Non Cryst. Solids 224, 173–183 (1998)

  56. 56.

    A.M. Wootton, M. Rappensberger, M.H. Lewis, S. Kitchin, A.P. Howes, R. Dupree, Structural properties of multicomponent SiOC glasses derived from metal alkoxide precursors. J Non-Cryst Solids 204, 217–227 (1996)

  57. 57.

    R. Dhiman, V. Petrunin, K. Rana, P. Morgen, Conversion of wooden structures into porous SiC with shape memory synthesis. Ceram. Int. 37, 3281–3289 (2011)

  58. 58.

    A. Saha, R. Raj, Crystallization maps for SiCO amorphous ceramics. J. Am. Ceram. Soc. 90, 578–583 (2007)

  59. 59.

    P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gottingen 26, 98–100 (1918)

  60. 60.

    M.A. Schiavon, N.A. Armelin, I. Valéria, P. Yoshida, Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics. Mater. Chem. Phy. 112, 1047–1054 (2008)

  61. 61.

    G.D. Soraru, N. Dallabona, C. Gervais, F. Babonneau, Organically modified SiO2–B2O3 gels displaying a high content of borosiloxanes (B−O−Si) bonds. Chem Mater. 11, 910–919 (1999)

  62. 62.

    D.H. Filsinger, D.B. Bourrie, Silica to silicon: key carbothermic reactions and kinetics. J. Am. Ceram. Soc. 73, 1726–1732 (1990)

  63. 63.

    G. Gouadec, P. Colomban, Non-destructive mechanical characterization of SiC fibers by Raman spectroscopy. J. Eur. Cer. Soc. 21, 1249–1259 (2001)

  64. 64.

    R. Dhiman, E. Johnson, E.M. Skou, P. Morgen, S.M. Andersen, SiC nanocrystals as Pt catalyst supports for fuel cell applications. J. Mater. Chem. A 1, 6030–6036 (2013)

  65. 65.

    H.P. Martin, E. Muller, G. Irmer, F. Babonneau, Crystallization behaviour and polytype transformation of polymer derived Silicon carbide. J. Eur. Cer. Soc. 17, 659–666 (1997)

  66. 66.

    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000)

  67. 67.

    G.W. Wagner, B.K. Na, M.A. Vannice, High resolution solid state NMR of 29Si and 13C in β-Silicon carbides. J. Phys. Chem. 93, 5061–5064 (1989)

  68. 68.

    X. Xie, Z.Yang, R. Ren, Leon L. Shaw, Solid state 29Si magic angle spinning NMR: investigation of bond formation and crystallinity of silicon and graphite powder mixtures during high energy milling, Mater. Sci. Eng. A255 (1998) 39–48.

  69. 69.

    A.D. Irwin, J.S. Holmgren, T.W. Zerda, J. Jonas, Spectroscopic investigation of Borosiloxane bond formation in the sol-gel process. J. Non-cryst. Solids 89, 191–205 (1987)

  70. 70.

    A.D. Irwin, J.S. Holmgren, J. Jonas, Solid state 29Si and 11B NMR studies of sol gel derived borosilicates. J. Non-cryst. Solids 101, 249–254 (1988)

Download references

Author information

Correspondence to Deepa Devapal or S. Packirisamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Devapal, D., Sreejith, K.J., Swaminathan, B. et al. Influence of Heat Treatment Temperature on the Microstructure Evolution of Poly(vinylborosiloxane) Derived Ceramics. J Inorg Organomet Polym (2020).

Download citation


  • Polyborosiloxane
  • Preceramic polymers
  • Ceramic conversion
  • Silicon-boron-oxycarbide ceramic
  • β-Silicon carbide