Thermal Degradation Behavior of a New Family of Organometallic Dendrimer

  • 8 Accesses


Organometallic dendrimers are one of the most attractive macromolecules owing to their unique properties that derived from the combination of the metallic moieties and the remarkable architecture of the dendrimers. A new family of organoiron dendrimers has been synthesized using divergent methodology. To gain insight into the stability of these dendrimers, we investigated their thermal property using nonisothermal thermogravimetry analysis (TGA), which reveal the kinetic triplets, the pre-exponential factor, the effective activation energy and the reaction model involved in their thermal degradation. The results were obtained at heating rates of 10, 15 and 20 °C min−1. Four nonisothermal methods, the Friedman, the Ozawa and Flynn and Wall, the Kissinger–Akahira–Sunose and the Minimizing were used to investigate the variation of the effective activation energy with the extent of crystallization and, hence, with temperature. In addition, the activation energy was calculated from isothermal data. The degradation mechanism follows the Avrami–Erofeev mechanism for solid-state reaction models.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    B. Yang, Y. Zhao, S. Wang, Y. Zhang, C. Fu, Y. Wei, L. Tao, Synthesis of multifunctional polymers through the Ugi reaction for protein conjugation, macromolecules 47 (2014) 5607–5612.

  2. 2.

    S. Fuchs, A. Pla-Quintana, S. Mazeres, A.-M. Caminade, J.-P. Majoral, Cationic and fluorescent “Janus” dendrimers. Org. Lett. 10, 4751–4754 (2008)

  3. 3.

    J. Khandare, M. Calderon, N.-M. Dagia, R. Haag, Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem. Soc. Rev. 41, 2824–2848 (2012)

  4. 4.

    S. De, A. Khan, Efficient synthesis of multifunctional polymersviathiol-epoxy “click” chemistry. Chem. Commun. 48, 3130–3132 (2012)

  5. 5.

    M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)

  6. 6.

    I. Gadwal, A. Khan, Protecting-group-free synthesis of chain-end multifunctional polymers by combining ATRP with thiol–epoxy ‘click’ chemistry. Polym. Chem. 4, 2440–2444 (2013)

  7. 7.

    H. Zeng, H.C. Little, T.N. Tiambeng, G.A. Williams, Z. Guan, Multifunctional dendronized peptide polymer platform for safe and effective siRNA delivery. J. Am. Chem. Soc. 135, 4962–4965 (2013)

  8. 8.

    L. Persano, A. Camposeo, D. Pisignano, Integrated bottom-up and top-down soft lithographies and microfabrication approaches to multifunctional polymers. J. Mater. Chem. C 1, 7663–7680 (2013)

  9. 9.

    A. Hirao, M. Hayashi, S. Loykulnant, K. Sugiyama, S.W. Ryu, N. Haraguchi, A. Matsuo, T. Higashihara, Precise syntheses of chain-multi-functionalized polymers, star-branched polymers, star-linear block polymers, densely branched polymers, and dendritic branched polymers based on iterative approach using functionalized 1,1-diphenylethylene derivatives. Prog. Polym. Sci. 30, 111–182 (2005)

  10. 10.

    M.J. Dunlop, C. Agatemor, A.S. Abd-El-Aziz, R. Bissessur, Nanocomposites derived from molybdenum disulfide and an organoiron dendrimer. J. Inorg. Organomet. Polym. Mater. 27(Suppl. 1), S84–S89 (2017)

  11. 11.

    S. Alaa, Abd-El-Aziz, Christian Agatemor, Emerging opportunities in the biomedical applications of dendrimers. J. Inorg. Organomet. Polym. Mater. 28, 369–382 (2018)

  12. 12.

    M. Alsehli, S.Y. Al-Raqa, I. Kucukkaya, P.R. Shipley, B.D. Wagner, A.S. Abd-El-Aziz, Synthesis and photophysical properties of a series of novel porphyrin dendrimers containing organoiron complexes. J. Inorg. Organomet. Polym. Mater. 29, 628–641 (2019)

  13. 13.

    S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications-reflections on the field. Adv. Drug Delivery Rev. 64, 102–115 (2012)

  14. 14.

    D.A. Tomalia, J.B. Christensen, U. Boas, Dendrimers, Dendrons, and Dendritic Polymers: Discovery, Applications, and the Future (Cambridge University Press, Cambridge, UK, 2012)

  15. 15.

    A.R. Menjoge, R.M. Kannan, D.A. Tomalia, Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discovery Today 15, 171–185 (2010)

  16. 16.

    M. Samoc, J.P. Morrall, G.T. Dalton, M.P. Cifuentes, M.G. Humphrey, Two-photon and three-photon absorption in an organometallic dendrimer. Angew. Chem. Int. Ed. 46, 731–733 (2007)

  17. 17.

    K. Onitsuka, N. Ohara, F. Takei, S. Takahashi, Organoruthenium dendrimers possessing tris(4-ethynylphenyl)amine bridges. Organometallics 27, 25–27 (2007)

  18. 18.

    K.A. Green, M.P. Cifuentes, M. Samoc, M.G. Humphrey, Syntheses and NLO properties of metal alkynyl dendrimers. Coord. Chem. Rev. 255, 2025–2038 (2011)

  19. 19.

    C. J. Jeffery, M. P. Cifuentes, G. T. Dalton, T. C. Corkery, M. D. Randles, A. C. Willis, M. Samoc, M. G. Humphrey, Organometallic complexes for nonlinear optics, 47 – synthesis and cubic optical nonlinearity of a stilbenylethynylruthenium dendrimer, macromol. rapid commun. 31 (2010) 846–849.

  20. 20.

    C.E. Powell, J.P. Morrall, S.A. Ward, M.P. Cifuentes, E.G. Notaras, M. Samoc, M.G. Humphrey, Dispersion of the third-order nonlinear optical properties of an organometallic dendrimer. J. Am. Chem. Soc. 126, 12234–12235 (2004)

  21. 21.

    A.M. McDonagh, M.G. Humphrey, M. Samoc, B. Luther-Davies, Organometallic complexes for nonlinear optics: 17.1 synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkynylruthenium dendrimer. Organometallics 18, 5195–5197 (1999)

  22. 22.

    J. Alvarez, T. Ren, A.E. Kaifer, Redox potential selection in a new class of dendrimers containing multiple ferrocene centers. Organometallics 20, 3543–3549 (2001)

  23. 23.

    J.R. Aranzaes, C. Belin, D. Astruc, Assembly of dendrimers with redox-active [{CpFe(mu3-CO)}4] clusters at the periphery and their application to oxo-anion and adenosine-5'-triphosphate sensing. Angew. Chem. Int. Ed. 45, 132–136 (2006)

  24. 24.

    C.M. Casado, B. González, I. Cuadrado, B. Alonso, M. Morán, J. Losada, Mixed ferrocene-cobaltocenium dendrimers. Angew. Chem. Int. Ed. 39, 2135–2138 (2000)

  25. 25.

    R. Djeda, A. Rapakousiou, L. Liang, N. Guidolin, J. Ruiz, D. Astruc, Click syntheses of 1,2,3-triazolylbiferrocenyl dendrimers and the selective roles of the inner and outer ferrocenyl groups in the redox recognition of ATP2- and Pd2+. Angew. Chem. Int. Ed. 49, 8152–8156 (2010)

  26. 26.

    K. Takada, D.J. Díaz, H.D. Abruña, I. Cuadrado, B. González, C.M. Casado, B. Alonso, M. Morán, J. Losada, Cobaltocenium-functionalized poly(propylene imine) dendrimers: redox and electromicrogravimetric studies and AFM imaging. Chem. Eur. J. 7, 1109–1117 (2001)

  27. 27.

    S.M. Waybright, K. McAlpine, M. Laskoski, M.D. Smith, U.H. Bunz, Organometallic dendrimers based on (tetraphenylcyclobutadiene) cyclopentadienylcobalt modules. J. Am. Chem. Soc. 124, 8661–8666 (2002)

  28. 28.

    R. Djeda, C. Ornelas, J. Ruiz, D. Astruc, Branching the electron-reservoir complex [Fe(η5-C5H5)(η6-C6Me6)][PF6] onto large dendrimers: “click”, amide, and ionic bonds. Inorg. Chem. 49, 6085–6101 (2010)

  29. 29.

    Z. Cheng, D.L. Thorek, A. Tsourkas, Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew. Chem. Int. Ed. 49, 346–350 (2010)

  30. 30.

    A.J.L. Villaraza, A. Bumb, M.W. Brechbiel, Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem. Rev. 110, 2921–2959 (2010)

  31. 31.

    K. Luo, G. Liu, W. She, Q. Wang, G. Wang, B. He, H. Ai, Q. Gong, B. Song, Z. Gu, Gadolinium-labeled peptide dendrimers with controlled structures as potential magnetic resonance imaging contrast agents. Biomaterials 32, 7951–7960 (2011)

  32. 32.

    A.S. Abd-El-Aziz, E.A. Strohm, Transition metal-containing macromolecules: En route to new functional materials. Polymer 53, 4879–4921 (2012)

  33. 33.

    M. Ottaviani, D. Appelhans, F. J. de la Mata, S. García-Gallego, A. Fattori, C. Coppola, M. Cangiotti, L. Fiorani, J. Majoral, Caminade, in Dendrimers in Biomedical Applications, 1st ed., (Eds: B. Klajnert, L. Peng, V. Ceña), RSC Publishing, Cambrigde, UK, 2013; p. 115.

  34. 34.

    Q.M. Kainz, O. Reiser, Polymer- and Dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. Acc. Chem. Res. 47, 667–977 (2014)

  35. 35.

    S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011)

  36. 36.

    J. Farjas, P. Roura, Isoconversional analysis of solid-state transformations: a critical review. Part I. Single step transformations with constant activation energy. J. Therm. Anal. Calorim. 105, 757–766 (2011)

  37. 37.

    S. Vyazovkin, K. Chrissafis, M.L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J.J. Suñol, ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta 590, 1–23 (2014)

  38. 38.

    Z. Ma, J. Wang, Y. Yang, Y. Zhang, C. Zhao, Y. Yu, S. Wang, Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches. J. Anal. Appl. Pyrolysis 134, 12–24 (2018)

  39. 39.

    N. Monika, V. Mulchandani, Katiyar, Generalized kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene succinate)/functionalized chitosan based reactive nanobiocomposite. Int. J. Biol. Macromol. 141, 831–842 (2019)

  40. 40.

    A.A. Joraid, R.M. Okasha, C.L. Rock, A.S. Abd-El-Aziz, A nonisothermal study of organoiron poly(alkynyl methacrylate) coordinated to dicobalt hexacarbonyl using advanced kinetics modelling. J. Inorg. Organomet. Polym. Mater. 24, 121–127 (2014)

  41. 41.

    M. Remanan, M. Kannan, R.S. Rao, S. Bhowmik, L. Varshney, M. Abraham, K. Jayanarayanan, Microstructure development, wear characteristics and kinetics of thermal decomposition of hybrid nanocomposites based on poly aryl ether ketone, boron carbide and multi walled carbon nanotubes. J. Inorg. Organomet. Polym. Mater. 27, 1649–1663 (2017)

  42. 42.

    S. Ebrahimi, A. Shakeri, T. Alizadeh, Thermal decomposition of ammonium perchlorate in the presence of cobalt hydroxyl@nano-porous polyaniline, 29 (2019) 1716–1727.

  43. 43.

    A.A. Joraid, The effect of temperature on nonisothermal crystallization kinetics and surface structure of selenium thin films. Phys B 390, 263–269 (2007)

  44. 44.

    A.A. Joraid, S.N. Alamri, A.A. Abu-Sehly, S.Y. Al-Raqa, P.O. Shipman, P.R. Shipley, A.S. Abd-El-Aziz, Isothermal kinetics and thermal degradation of an aryl azo dye-containing polynorbornene. Thermochim. Acta 515, 38–42 (2011)

  45. 45.

    H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J. Polym. Sci. C 6, 183–195 (1964)

  46. 46.

    T.A. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881–1886 (1965)

  47. 47.

    J.H. Flynn, L.A. Wall, Thermal analysis of polymer by thermogravemetric analysis. J. Res. Natl. Bur. Stand. Sect. A 70, 487–523 (1966)

  48. 48.

    S. Vyazovkin, Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J. Comput. Chem. 18, 393–402 (1997)

  49. 49.

    S. Vyazovkin, Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22, 178–183 (2001)

  50. 50.

    S. Vyazovkin, Isoconversional kinetics of thermally stimulated processes (Springer International Publishing, Switzerland, 2015)

  51. 51.

    A.S. Abd-El-Aziz, E.K. Todd, R.M. Okasha, P.O. Shipman, T.E. Wood, Macromolecules containing redox-active neutral and cationic iron complexes. Macromolecules 38(38), 9411–9419 (2005)

  52. 52.

    B. Roduit, Prediction of the progress of solid-state reactions under different temperature modes. Thermochim. Acta 388, 377–387 (2002)

  53. 53.

    A.K. Burnham, L.N. Dinh, A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application prediction. J. Therm. Anal. Cal. 89, 479–490 (2007)

  54. 54.

    B. Roduit, L. Xia, P. Folly, B. Berger, J. Mathieu, A. Sarbach, H. Andres, M. Ramin, B. Vogelsanger, D. Spitzer, H. Moulard, D. Dilhan, The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J. Therm. Anal. Cal. 93, 143–152 (2008)

  55. 55.

    B. Roduit, W. Dermaut, A. Lunghi, P. Folly, B. Berger, A. Sarbach, Advanced kinetics-based simulation of time to maximum rate under adiabatic conditions. J. Therm. Anal. Cal. 93, 163–173 (2008)

  56. 56.

    A.A. Joraid, I.M.A. Alhosuini, Effect of heating rate on the kinetics and mechanism of crystallization in amorphous Se85Te10Pb5 glasses. Thermochim. Acta 595, 28–34 (2014)

Download references

Author information

Correspondence to Ahmad A. Joraid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joraid, A.A., Okasha, R.M., Al-Maghrabi, M.A. et al. Thermal Degradation Behavior of a New Family of Organometallic Dendrimer. J Inorg Organomet Polym (2020).

Download citation


  • Organometallic dendrimer
  • Thermal degradation
  • Kinetic
  • Isoconversional methods
  • Kinetic model