Synthesis, Characterization and Thermal Studies of a Nanosized 1D l-Arginine/Copper(II) Coordination Polymer by Sonochemical Method: A New Precursor for Preparation of Copper(II) Oxide Nanoparticles

  • 11 Accesses


In the present work, 1D-copper(II) coordination polymer, {[Cu(μ-l-Arg)2(H2O)]SO4}n (1); (l-Arg: l-Arginine), was synthesized and identified by elemental analysis, FT-IR spectroscopy, molar conductivity, thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and single-crystal X-ray diffraction. The compound 1 was also prepared by a sonochemical process in the form of nanoparticles. The particle size and morphology of the synthesized nanoparticles were investigated by powder X-ray diffraction (PXRD) and field emission scanning electron microscopy (FE-SEM). In the crystal structure of 1, the copper atoms are coordinated in a distorted octahedral geometry. In this geometry, the cis-equatorial plane (N2O2) is constructed by two NO-donor l-Arg ligands. The remaining coordination sites in the apical positions are occupied by an oxygen atom of the neighboring l-Arg and the oxygen atom of a water molecule. In 1, infinite one-dimensional (1D) networks are constructed through carboxylate bridges. Finally, CuO nanoparticles were produced by thermal decomposition of the sonochemically prepared nanoparticles of 1, and characterized by FT-IR, XRD, FE-SEM and EDS.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38(5), 1477–1504 (2009)

  2. 2.

    K.-T. Wong, J.-M. Lehn, S.-M. Peng, G.-H. Lee, Chem. Commun. (2000).

  3. 3.

    K.-L. Zhang, N. Qiao, H.-Y. Gao, F. Zhou, M. Zhang, Polyhedron 26(12), 2461–2469 (2007)

  4. 4.

    A. Caneschi, D. Gatteschi, N. Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A. Rettori, M.G. Pini, M.A. Novak, Angew. Chem. Int. Ed. Engl. 40(9), 1760–1763 (2001)

  5. 5.

    S. Zang, Y. Su, Y. Li, Z. Ni, Q. Meng, Inorg. Chem. 45(1), 174–180 (2006)

  6. 6.

    M. Aoyagi, K. Biradha, M. Fujita, J. Am. Chem. Soc. 121(32), 7457–7458 (1999)

  7. 7.

    J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38(5), 1450–1459 (2009)

  8. 8.

    N. Fayaz Bakhsh, M.J. Soltanian Fard, P. Hayati, A. Masoudiasl, J. Janczak, J. Mol. Struct. 1200, 127020 (2020)

  9. 9.

    B.-Y. Lou, F.-L. Jiang, B.-L. Wu, D.-Q. Yuan, M.-C. Hong, Cryst. Growth Des. 6(4), 989–993 (2006)

  10. 10.

    D. Inci, R. Aydin, T. Sevgi, Y. Zorlu, E. Demirkan, J. Coord. Chem. 70(3), 512–543 (2017)

  11. 11.

    A. Wojciechowska, A. Gągor, W. Zierkiewicz, A. Jarząb, A. Dylong, M. Duczmal, RSC Adv. 5(46), 36295–36306 (2015)

  12. 12.

    X. Yang, J.D. Ranford, J.J. Vittal, Cryst. Growth Des. 4(4), 781–788 (2004)

  13. 13.

    F. Shahangi Shirazi, K. Akhbari, Ultrason. Sonochem. 31, 51–61 (2016)

  14. 14.

    A. Morsali, H.H. Monfared, A. Morsali, C. Janiak, Ultrason. Sonochem. 23, 208–211 (2015)

  15. 15.

    A. Sonthila, P. Ruankham, S. Choopun, D. Wongratanaphisan, S. Phadungdhitidhada, A. Gardchareon, J. Phys. Conf. Ser. 901, 012097 (2017)

  16. 16.

    G. Borkow, R.C. Zatcoff, J. Gabbay, Med. Hypotheses 73(6), 883–886 (2009)

  17. 17.

    M.P. Rao, J.J. Wu, A.M. Asiri, S. Anandan, Water Sci. Technol. 75(6), 1421–1430 (2017)

  18. 18.

    K. Borgohain, J. Singh, M.R. Rao, T. Shripathi, S. Mahamuni, Phys. Rev. B 61(16), 11093 (2000)

  19. 19.

    A.A. Eliseev, A.V. Lukashin, A.A. Vertegel, L.I. Heifets, A.I. Zhirov, Y.D. Tretyakov, Mater. Res. Innov. 3(5), 308–312 (2000)

  20. 20.

    R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12(8), 2301–2305 (2000)

  21. 21.

    M. Salavati-Niasari, F. Davar, Mater. Lett. 63(3–4), 441–443 (2009)

  22. 22.

    F.H. Allen, Acta Cryst. B 58(3–1), 380–388 (2002)

  23. 23.

    L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 40(4), 786–790 (2007)

  24. 24.

    V. Petříček, M. Dušek, L. Palatinus Z, Kristallogr. Cryst. Mater. 229(5), 345–352 (2014)

  25. 25.

    J. Rohlíček, M. Hušák, MCE2005—a new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Cryst. 40(3), 600–601 (2007)

  26. 26.

    G. Bergerhoff, M. Berndt, K. Brandenburg, J. Res. Natl. Inst. Stand. Technol. 101(3), 221 (1996)

  27. 27.

    M. Hakimi, M. Alikhani, M. Mashreghi, N. Feizi, H. Raesi, Y. Mirzaie, V. Eigner, M. Dusek, J. Mol. Struct. 1186, 355–361 (2019)

  28. 28.

    H. Hemissi, M. Nasri, S. Abid, S. Al-Deyab, E. Dhahri, E. Hlil, M. Rzaigui, J. Solid State Chem. 196, 489–497 (2012)

  29. 29.

    R. Mrozek, Z. Rzaczyńska, M. Sikorska-Iwan, M. Jaroniec, T. Głowiak, Polyhedron 18(17), 2321–2326 (1999)

  30. 30.

    D.A. Köse, E. Toprak, E. Avcı, G.A. Avcı, O. Şahin, O. Büyükgüngör, J. Chin. Chem. Soc. 61(8), 881–890 (2014)

  31. 31.

    K. Nakamoto, K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th edn. (Wiley, New Jersey, 2009)

  32. 32.

    R.W. Cheary, A.A. Coelho, J.P. Cline, Fundamental parameters line profile fitting in laboratory diffractometers. J. Res. Natl. Inst. Stand. Technol. 109(1), 1–25 (2004)

  33. 33.

    M. Arfan, D.N. Siddiqui, T. Shahid, Z. Iqbal, Y. Majeed, I. Akram, R. Bagheri, Z. Song, A. Zeb, Result. Phys. 13, 102187 (2019)

  34. 34.

    X.-X. Cheng, S. Hojaghani, M.-L. Hu, M.H. Sadr, A. Morsali, Ultrason. Sonochem. 37, 614–622 (2017)

  35. 35.

    M. Nafees, M. Ikram, S. Ali, Dig. J. Nanomater. Biostruct. 10(2), 635–641 (2015)

Download references


We are grateful to the Payame Noor University of Mashhad for support of this work. The crystallographic part was supported by the project 18-10504S of the Czech Science Foundation using instruments of the ASTRA laboratory established within the Operation program Prague Competitiveness—Project CZ.2.16/3.1.00/24510

Author information

Correspondence to Mohammad Hakimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alikhani, M., Hakimi, M., Moeini, K. et al. Synthesis, Characterization and Thermal Studies of a Nanosized 1D l-Arginine/Copper(II) Coordination Polymer by Sonochemical Method: A New Precursor for Preparation of Copper(II) Oxide Nanoparticles. J Inorg Organomet Polym (2020) doi:10.1007/s10904-020-01442-8

Download citation


  • Coordination polymer
  • Copper(II)
  • l-Arginine
  • Crystal structure
  • Thermal decomposition
  • Nanoparticles