Advertisement

Electronic Structure, Morphological Aspects, and Photocatalytic Discoloration of Three Organic Dyes with MgWO4 Powders Synthesized by the Complex Polymerization Method

  • 6 Accesses

Abstract

Heterogeneous photocatalytic (PC) degradation of organic dyes in aqueous solution with semiconductor oxides has been very effective in relation to conventional methods for the wastewater treatment. In this paper, MgWO4 powder was synthesized by the complex polymerization method and heat-treated at 900 °C for 2 h. Their structure, morphology and optical behavior were characterized by different techniques. First-principles quantum mechanical calculations based on the DFT in the B3LYP level was employed to obtain their electronic band structure (EBS) and density of state (DOS). Moreover, we have investigated the PC properties for the discoloration of three organic dyes. XRD patterns indicate that MgWO4 powders present a monoclinic structure. FE-SEM and TEM images showed that these powders are composed of several nanoparticles. UV–Vis spectrum displays an optical band gap of 4.33 eV, while EBS calculation showed a direct band gap value of 4.49 eV. DOS data revealed that the main orbitals involved in the electronic structure are O-2p orbitals in the valence band and W-5d orbitals in the conduction band. Finally, it was obtained the best PC activity of MgWO4 powders with discoloration of 84% for bromocresol green dye, while the discoloration for methyl orange and rhodamine B dyes were 56% and 29%, respectively.

Graphic Abstract

The electronic structure, morphology and photocatalytic properties of MgWO4 powders synthesized by complex polymerization method calcinated at 900 °C for 2 h have been explained for the first time.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    G. Sharma, M. Naushad, D. Pathania, A. Kumar, Desalin. Water Treat. 57, 19443–19455 (2016)

  2. 2.

    G. Sharma, A. Kumar, K. Devi, S. Sharma, M. Nausha, A.A. Ghfar, T. Ahama, F.J. Stadler, Int. J. Biol. Macromol. 114, 295–305 (2018)

  3. 3.

    G. Sharma, A. Kumar, M. Nausha, A. García-Peñas, A.H. Al-Muhtaseb, A.A. Ghfar, V. Sharma, T. Ahamad, F.J. Stadler, Carbohyd. Polym. 202, 444–453 (2018)

  4. 4.

    G. Sharma, S. Bhogal, M. Naushad, A. Kumar, F.J. Stadler, J. Photochem. Photobiol. 347, 235–246 (2017)

  5. 5.

    G. Sharma, B. Thakur, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, M. Sillanpaa, G.T. Mola, Mater. Chem. Phys. 193, 129–139 (2017)

  6. 6.

    G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Chem. Eng. J. 215, 413–421 (2014)

  7. 7.

    G. Sharma, S. Bhogal, V.K. Gupta, S. Agarwal, A. Kumar, D. Pathania, G.T. Mola, F.J. Stadler, J. Mol. Liq. 275, 499–509 (2019)

  8. 8.

    G. Sharmaa, A. Kumar, S. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, T. Ahamad, F.J. Stadler, Sep. Purif. Technol. 211, 895–908 (2019)

  9. 9.

    T. Montini, V. Gombac, A. Hammed, L. Felisari, G. Adami, P. Fornasiero, Chem. Phys. Lett. 498, 113–119 (2010)

  10. 10.

    H. Zhang, R.J. Bai, C. Lu, J. Li, Y.G. Xu, L.B. Kong, M.C. Liu, Ionics 25, 533–540 (2019)

  11. 11.

    J. Ruiz-Fuertes, S. López-Moreno, D. Errandonea, J. Pellicer-Porres, R. Lacomba-Perales, A. Segura, P. Rodríguez-Hernández, A. Muñoz, A.H. Romero, J. González, J. Appl. Phys. 107, 083506–1–083506-10 (2010)

  12. 12.

    M.A.P. Almeida, L.S. Cavalcante, M. Siu Li, J.A. Varela, E. Longo, J. Inor. Organomet. Polym. Mater. 22, 264–270 (2012)

  13. 13.

    Q. Gou, O.J. Kleppa, Thermochim. Acta 288, 53–61 (1996)

  14. 14.

    E.K. Kazenas, Y.V. Tsvetkov, I.O. Samoilova, G.K. Astakhova, A.A. Petrov, V.A. Volchenkova, Russ. Metall. (Metally) 2004, 320–324 (2004)

  15. 15.

    M. del Arco, D. Carriazo, S. Gutiérrez, C. Martín, V. Rives, Inorg. Chem. 43, 375–384 (2004)

  16. 16.

    L. Jin-Qing, Y. Chuang-Tao, M. Jian-Xin, Chin. J. Lumin. 30, 327–331 (2009)

  17. 17.

    Y. Zu, Y. Zhang, K. Xu, F. Zhao, RSC Adv. 6, 31046–31052 (2016)

  18. 18.

    J.R. Günter, M. Amberg, Solid State Ion. 32(33), 141–146 (1989)

  19. 19.

    M. Amberg, J.R. Günter, H. Schmalle, G. Blasse, J. Solid State Chem. 77, 162–169 (1988)

  20. 20.

    L.L.Y. Chang, M.G. Scroger, B. Phillips, J. Am. Ceram. Soc. 49, 385–390 (1966)

  21. 21.

    R.C. Pullar, S. Farrah, N.M. Alford, J. Eur. Ceram. Soc. 27, 1059–1063 (2007)

  22. 22.

    V.B. Mikhailik, L. Vasylechko, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyy, J. Phys. Stud. 14, 3201-1–3201-11 (2010)

  23. 23.

    M. Gancheva, A. Naydenov, R. Iordanova, D. Nihtianova, P. Stefanov, J. Mater. Sci. 50, 3447–3456 (2015)

  24. 24.

    L. Zhang, Y. Huang, S. Sun, F. Yuan, Z. Lin, G. Wang, J. Lumin. 169, 161–164 (2016)

  25. 25.

    C.S. Lim, Asian J. Chem. 24, 1519–1522 (2012)

  26. 26.

    X. Feng, W. Feng, M. Xia, K. Wang, H. Liu, D. Deng, X. Qin, W. Yao, W. Zhu, RSC Adv. 6, 14826–14831 (2016)

  27. 27.

    J. Li, C. Yang, J. Meng, J. Chin. Rare Earth Soc. 27, 730–734 (2009)

  28. 28.

    N.R. Krutyak, D.A. Spassky, I.A. Tupitsyna, A.M. Dubovik, Opt. Spectr. 121, 45–51 (2016)

  29. 29.

    L. Li, Y. Yu, G. Wang, L. Zhang, Z. Lin, CrystEngComm 15, 6083–6089 (2013)

  30. 30.

    J. Huang, B. Tian, J. Wang, Y. Wang, W. Lu, Q. Li, L. Jin, C. Li, Z. Wang, CrystEngComm 20, 608–614 (2018)

  31. 31.

    P.D. Bhuyan, D. Singh, S. Kansara, P. Yadav, S.K. Gupta, Y. Sonvane, S.K. Rout, E. Sinha, J. Mater. Sci. 52, 4934–4943 (2017)

  32. 32.

    N. Krutyak, V.V. Mikhailin, D. Spassky, I.A. Tupitsyna, A.M. Dubovik, Inter. Conf. Oxide Mater. Electr. Eng. OMEE. 2012, 235–236 (2012)

  33. 33.

    V.B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, L. Vasylechko, J. Phys. Cond. Matter. 20, 365219–1–365219-8 (2008)

  34. 34.

    M. Guo, G. Dou, S. Gong, D. Zhou, J. Eur. Ceram. Soc. 32, 883–890 (2012)

  35. 35.

    M. Guo, G. Dou, G. Li, S. Gong, J. Mater. Sci. Mater. Electr. 26, 608–612 (2015)

  36. 36.

    R. Ullah, R.N. Malik, A. Qadir, Afr. J. Environ. Sci. Technol. 3, 429–446 (2009)

  37. 37.

    D.M.A. Costa, A.C.B. Júnior, Holos. 21, 81–101 (2005)

  38. 38.

    F.C.C. Assis, S. Albeniz, A. Gil, S.A. Korili, R. Trujillano, M.A. Vicente, L. Marçal, M. Saltarelli, K.J. Ciuffi, Desalin. Water Treat. 39, 316–322 (2012)

  39. 39.

    L.F. Fernandes, A.C. Wosiak, L. Domingues, C.V. Pacheco, P.E. Lagos, Curitiba: Sanepar v. 1: 1–500 (2005)

  40. 40.

    Z. Carmen, S. Daniela, Organic pollutants ten years after the stockholm convention—environmental and analytical update (InTech, Croatia, 2012), pp. 55–86. Chapter 3

  41. 41.

    Y. Na, S. Song, Y. Park, Korean J. Chem. Eng. 22, 196–200 (2005)

  42. 42.

    M. Soylak, Y.E. Unsal, E. Yilmaz, M. Tuzen, Food Chem. Toxicol. 49, 1796–1799 (2011)

  43. 43.

    R. Jain, M. Mathur, S. Sikarwar, A. Mittal, J. Environ. Manage. 85, 956–964 (2007)

  44. 44.

    R.G. Sandberg, G.H. Henderson, R.D. White, E.M. Eyring, J. Phys. Chem. 76, 4023–4025 (1972)

  45. 45.

    R.A.G. de Oliveira, T.B. Zanoni, G.G. Bessegato, D.P. Oliveira, G.A. Umbuzeiro, Quim. Nova. 37, 1037–1046 (2014)

  46. 46.

    A.A.L.R. Al-Rubaie, R.J. Mhessn, E-J. Chem. 9, 465–470 (2012)

  47. 47.

    L.F. Silva, O.F. Lopes, V.R. Mendonça, K.T.G. Carvalho, E. Longo, Photochem. Photobiol. 92, 371–378 (2016)

  48. 48.

    W. Xin, D. Zhu, G. Liu, Y. Hua, W. Zhou, Int. J. Photoenergy. 2012, 767905–1–767905-7 (2012)

  49. 49.

    F.R. Zaggout, J. Disper. Sci. Technol. 26, 757–761 (2005)

  50. 50.

    S. Delanghe, W. Van Biesen, N. Van de Velde, S. Eloot, A. Pletinck, E. Schepers, G. Glorieux, J.R. Delanghe, M.M. Speeckaert, Clin. Chem. Lab. Med. 56, 436–440 (2018)

  51. 51.

    I. Kazeminezhad, A. Sadollahkhani, J. Mater. Sci.: Mater. Electr. 27, 4206–4215 (2016)

  52. 52.

    K. Kabra, R. Chaudhary, R.L. Sawhney, Ind. Eng. Chem. Res. 43, 7683–7696 (2004)

  53. 53.

    L.S. Cavalcante, J.C. Sczancoski, V.C. Albarici, J.M.E. Matos, J.A. Varela, Mater. Sci. Eng. B. 150, 18–25 (2008)

  54. 54.

    J.W. England, J. Pharmacol. Sci. 1, 440–443 (1912)

  55. 55.

    T. Salmi, E. Paatero, P. Nyholm, Chem. Eng. Process. Process Intensif. 43, 1487–1493 (2004)

  56. 56.

    M. Kakihana, M. Yoshimura, Bull. Chem. Soc. Jpn. 72, 1427–1443 (1999)

  57. 57.

    H.M. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)

  58. 58.

    M. Bortolotti, L. Lutterotti, I. Lonardelli, J. Appl. Cryst. 42, 538–539 (2009)

  59. 59.

    L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, H.R. Wenk, Z. Kristallogr, Krist. 26, 125–130 (2007)

  60. 60.

    M. Bortolotti, I. Lonardelli, J. Appl. Cryst. 46, 259–261 (2013)

  61. 61.

    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

  62. 62.

    R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D’Arco, M. Llunel, M. Causà, Y. Noël, CRYSTAL14 User’s Manual, Italy (2014)

  63. 63.

    A.D. Becke, J. Chem. Phys. 96, 2155–2160 (1992)

  64. 64.

    A.F. Gouveia, J.C. Sczancoski, M.M. Ferrer, A.S. Lima, M.R.M.C. Santos, M. Siu lI, R.S. Santos, E. Longo, L.S. Cavalcante, Inorg. Chem. 53, 5589–5599 (2014)

  65. 65.

    http://www.crystal.unito.it/basis-sets.php

  66. 66.

    F. Corà, A. Patel, N.M. Harrison, R. Dovesi, C.R.A. Catlow, J. Am. Chem. Soc. 118, 12174–12182 (1996)

  67. 67.

    R.C. de Oliveira, L. Gracia, M. Assis, M. Siu Li, J. Andres, L.S. Cavalcante, E. Longo, CrystEngComm 18, 6483–6491 (2016)

  68. 68.

    E.L.S. Souza, J.C. Sczancoski, I.C. Nogueira, M.A.P. Almeida, M.O. Orlandi, M.S. Li, R.A.S. Luz, M.G.R. Filho, E. Longo, L.S. Cavalcante, Ultrason. Sonochem. 38, 256–270 (2017)

  69. 69.

    O.S. Filipenko, E.A. Pobedimskaya, V.I. Ponomarev, N.V. Belov, Kristallogr. 13, 1073–1075 (1968)

  70. 70.

    H.M. Rietveld, Acta Crystallogr. 22, 151–152 (1967)

  71. 71.

    K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653–658 (2008)

  72. 72.

    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272–1276 (2011)

  73. 73.

    L.S. Cavalcante, E. Moraes, M.A.P. Almeida, C.J. Dalmaschio, N.C. Batista, J.A. Varela, E. Longo, M. Siu Li, J. Andrés, A. Beltrán, Polyhedron 54, 13–25 (2013)

  74. 74.

    R.A. Smith, Semiconductors, 2nd edn. (Cambridge University Press, London, 1978), pp. 1–535

  75. 75.

    J. Meng, T. Chen, X. Wei, J. Wei, J. Li, Z. Zhang, RSC Adv. 9, 2567–2571 (2019)

  76. 76.

    R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, A. Segura, Europhys. Lett. 83, 37002–37006 (2008)

  77. 77.

    S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Inorg. Chem. 53, 4394–4399 (2014)

  78. 78.

    S. Wannapop, T. Thongtem, S. Thongtem, Appl. Surf. Sci. 258, 4971–4976 (2012)

  79. 79.

    I.A. Kamenskikh, V.N. Kolobanov, V.V. Mikhailin, I.N. Shpinkov, D.A. Spassky, Nucl. Instr. Meth. Phys. Res A. 467–468, 1423–1425 (2001)

  80. 80.

    E.A.A. Júnior, F.X. Nobre, G.S. Sousa, L.S. Cavalcante, M.R.M.C. Santos, F.L. Souza, J.M.E. de Matos, RSC Adv. 7, 24263–24281 (2017)

  81. 81.

    Y. Zhao, C. Li, X. Liu, F. Gu, J. Alloys Compd. 440, 281–286 (2007)

  82. 82.

    T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B. 102, 5845–5851 (1998)

  83. 83.

    I. Fajriati, M. Mudasir, E.T. Wahyuni, Int. J. Adv. Chem. Eng. Biol. Sci. 1, 21–24 (2014)

  84. 84.

    T. Chen, Y. Zheng, J.-M. Lin, G. Chen, J. Am. Soc. Mass Spectr. 19, 997–1003 (2008)

  85. 85.

    H. Lee, Y.K. Park, S.J. Kim, B.H. Kim, H.S. Yoon, S.-C. Jung, J. Ind. Eng. Chem. 35, 205–210 (2016)

  86. 86.

    G. Sharma, A. Kumar, S. Sharma, M. Naushad, T. Ahamad, A.H. Al-Muhtaseb, M. Naushad, F.J. Stadler, S.I. Al-Saeedi, G.M. Al-Senani, N.S. Al-kadhi, F.J. Stadler, J. Mol. Liq. 272, 170–179 (2018)

  87. 87.

    G. Sharma, D.D. Dionysiou, S. Sharma, A. Kumar, A.H. Al-Muhtaseb, M. Naushad, F.J. Stadler, Catal. Today. 335, 437–451 (2019)

  88. 88.

    W. Zhong, T. Jiang, Y. Dang, J. He, S.Y. Chen, Appl. Catal. A. Gen. 549, 302–309 (2018)

  89. 89.

    M.U.D. Sheikh, G.A. Naikoo, M. Thomas, M. Bano, F. Khan, New J. Chem. 40, 5483–5494 (2016)

  90. 90.

    S. Xie, P. Huang, J.J. Kruzic, X. Zeng, H. Qian, Sci. Rep. 6, 21947–21956 (2016)

  91. 91.

    S. Yang, C. Ye, X. Song, L. He, F. Liao, RSC Adv. 4, 54810–54818 (2014)

  92. 92.

    B. Saha, S. Das, J. Saikia, G. Das, J. Phys. Chem. C. 115, 8024–8033 (2011)

  93. 93.

    L. Parimala, J. Santhanalakshmi, React. Kinet. Mech. Catal. 109, 393–403 (2013)

  94. 94.

    J. Xiao, H. Zhang, Y. Xia, Z. Li, W. Huang, RSC Adv. 6, 39861–39869 (2016)

  95. 95.

    V.N. Kolosov, V.M. Orlov, M.N. Miroshnichenko, T.Yu. Prokhorova. IOP Conf Ser Mater Sci Eng 704, 012011 (2019)

  96. 96.

    C. Martín, P. Malet, V. Rives, G. Solana, J. Catal. 169, 516–526 (1997)

  97. 97.

    R.A. Roca, J.C. Sczancoski, I.C. Nogueira, M.T. Fabbro, H.C. Alves, L. Gracia, L.P.S. Santos, C.P. de Sousa, J. Andrés, G.E. Luz Jr., E. Longo, L.S. Cavalcante, Catal. Sci. Technol. 5, 4091–4107 (2015)

  98. 98.

    L.S. Cavalcante, F.M.C. Batista, M.A.P. Almeida, A.C. Rabelo, I.C. Nogueira, N.C. Batista, J.A. Varela, M.R.M.C. Santos, E. Longo, M. Siu Li, RSC Adv. 2, 6438–6454 (2012)

  99. 99.

    L.S. Cavalcante, J.C. Sczancoski, N.C. Batista, E. Longo, J.A. Varela, M.O. Orlandi, Adv. Powder Technol. 24, 344–353 (2013)

  100. 100.

    G. Botelho, J. Andres, L. Gracia, L.S. Matos, E. Longo, ChemPlusChem. 81, 202–212 (2016)

  101. 101.

    G. Byzynski, C. Melo, D.P. Volanti, M.M. Ferrer, A.F. Gouveia, C. Ribeiro, J. Andrés, E. Longo, Mater. Des. 120, 363–375 (2017)

  102. 102.

    W.S. Pereira, J.C. Sczancoski, Y.N.C. Calderon, V.R. Mastelaro, G. Botelho, T.R. Machado, E.R. Leite, E. Longo, Appl. Surf. Sci. 440C, 61–72 (2018)

Download references

Acknowledgment

The authors acknowledge the financial support of the Brazilian research financing institutions: CNPq (304531/2013-8, 150949/2018-9, 312318/2017-0 and 479644/2012-8), FAPESP (2012/14004-5, 2013/26671-9 and 2017/11986-5), and CAPES.

Author information

Correspondence to L. S. Cavalcante.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 349 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gouveia, A.F., Vieira, V.E.M., Sczancoski, J.C. et al. Electronic Structure, Morphological Aspects, and Photocatalytic Discoloration of Three Organic Dyes with MgWO4 Powders Synthesized by the Complex Polymerization Method. J Inorg Organomet Polym (2020) doi:10.1007/s10904-019-01435-2

Download citation

Keywords

  • MgWO4 powders
  • Rietveld refinement
  • Electronic band structure
  • Density of states
  • Photocatalysis