Advertisement

Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study

  • 23 Accesses

Abstract

Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    H.C. Pape, A. Evans, P. Kobbe, J. Orthop. Trauma 24(Suppl 1), S36–S40 (2010)

  2. 2.

    W. Wang, K.W.K. Yeung, Bioact. Mater. 2, 224–247 (2017)

  3. 3.

    S. Caddeo, M. Boffito, S. Sartori, Front. Bioeng. Biotechnol. 5, 40 (2017)

  4. 4.

    F. Zhao, D. Yao, R. Guo, L. Deng, A. Dong, J. Zhang, Nanomaterials 5, 2054–2130 (2015)

  5. 5.

    Z.-Y. Qiu, I.-S. Noh, S.-M. Zhang, Front. Mater. Sci. 7, 40–50 (2013)

  6. 6.

    J.R. Ramya, K.T. Arul, P. Sathiamurthi, K. Asokan, S.N. Kalkura, Ceram. Int. 42, 11045–11054 (2016)

  7. 7.

    V.K. Bommala, M.G. Krishna, C.T. Rao, J. Magnes, Alloys 7, 72–79 (2019)

  8. 8.

    Y.L. Lam, S. Muniyandy, H. Kamaruddin, A. Mansor, P. Janarthanan, Radiat. Phys. Chem. 106, 213–222 (2015)

  9. 9.

    D.J. Hickey, B. Ercan, L. Sun, T.J. Webster, Acta Biomater. 14, 175–184 (2015)

  10. 10.

    C.Y. Tan, A. Yaghoubi, S. Ramesh, S. Adzila, J. Purbolaksono, M.A. Hassan, M.G. Kutty, Ceram. Int. 39, 8979–8983 (2013)

  11. 11.

    S. Shanmugam, B. Gopal, Ceram. Int. 40, 15655–15662 (2014)

  12. 12.

    A. Oyane, H.-M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, J. Biomed. Mater. Res. Part A 65A, 188–195 (2003)

  13. 13.

    T. Kokubo, H. Takadama, Biomaterials 27, 2907–2915 (2006)

  14. 14.

    S.R.K. Meka, V. Agarwal, K. Chatterjee, Mater. Sci. Eng. C 94, 565–579 (2019)

  15. 15.

    N. Ninan, Y. Grohens, A. Elain, N. Kalarikkal, S. Thomas, Eur. Polym. J. 49, 2433–2445 (2013)

  16. 16.

    A. Koç Demir, A.E. Elçin, Y.M. Elçin, Mater. Sci. Eng. C 89, 8–14 (2018)

  17. 17.

    W.-C. Lin, D.-G. Yu, M.-C. Yang, Coll. Surf. B: Biointerfaces 47, 43–49 (2006)

  18. 18.

    C. Gao, S. Ito, A. Obata, T. Mizuno, J.R. Jones, T. Kasuga, Polymer 91, 106–117 (2016)

  19. 19.

    M. Abdellahi, A. Najafinezhad, H. Ghayour, S. Saber-Samandari, A. Khandan, J. Mech. Behav. Biomed. Mater. 72, 171–181 (2017)

  20. 20.

    B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, V. Asokan, Arab. J. Chem. 11, 645–654 (2018)

  21. 21.

    O. Kaygili, S. Keser, N. Bulut, T. Ates, Physica B: Condens. Matter 537, 63–67 (2018)

  22. 22.

    N. Kanasan, S. Adzila, H.A. Rahman, N. Bano, G. Panerselvan, N.A. Hidayati, Key Eng. Mater. 791, 45–49 (2018)

  23. 23.

    D. Laurencin, N. Almora-Barrios, N.H. de Leeuw, C. Gervais, C. Bonhomme, F. Mauri, W. Chrzanowski, J.C. Knowles, R.J. Newport, A. Wong, Z. Gan, M.E. Smith, Biomaterials 32, 1826–1837 (2011)

  24. 24.

    A.Z. Alshemary, M. Akram, Y.-F. Goh, U. Tariq, F.K. Butt, A. Abdolahi, R. Hussain, Ceram. Int. 41, 11886–11898 (2015)

  25. 25.

    M.M. Islam, A. Zaman, M.S. Islam, M.A. Khan, M.M. Rahman, Prog. Biomater. 3, 21 (2014)

  26. 26.

    A.M. Hamdani, I.A. Wani, A. Gani, N.A. Bhat, F.A. Masoodi, Innov. Food Sci. Emerg. Technol. 44, 74–82 (2017)

  27. 27.

    A.W.M. El-Naggar, M.M. Senna, T.A. Mostafa, R.H. Helal, Int. J. Biol. Macromol. 102, 1045–1051 (2017)

  28. 28.

    B.G. Ershov, Russ. Chem. Rev. 67, 315–334 (1998)

  29. 29.

    K. Benfattoum, N. Haddadine, N. Bouslah, A. Benaboura, P. Maincent, R. Barillé, A. Sapin-Minet, M.S. El-Shall, Polym. Adv. Technol. 29, 884–895 (2018)

  30. 30.

    H. Ichiura, M. Morikawa, K. Fujiwara, J. Mater. Sci. 40, 1987–1991 (2005)

  31. 31.

    R. Morsy, Roman. J. Biophys. 26, 83–92 (2016)

  32. 32.

    E.A. Abdel-Razik, D.M. Ayaad, A. Elbedwehy, Int. J. Modern. Org. Chem. 2(2), 191–206 (2013)

  33. 33.

    J. Li, H. Sun, D. Sun, Y. Yao, F. Yao, K. Yao, Carbohydr. Polym. 85, 885–894 (2011)

  34. 34.

    M. Kazemzadeh Narbat, M. Solati Hashtjin, M. Pazouki, Iran. J. Biotechnol. 4, 54–60 (2003)

  35. 35.

    S. Dasgupta, S.S. Banerjee, A. Bandyopadhyay, S. Bose, Langmuir 26, 4958–4964 (2010)

  36. 36.

    H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biomaterials 28, 3338–3348 (2007)

  37. 37.

    A.J. Salgado, O.P. Coutinho, R.L. Reis, Macromol. Biosci. 4, 743–765 (2004)

  38. 38.

    W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, S. Karl, Mater. Sci. Eng. A 362, 40–60 (2003)

  39. 39.

    X. Cai, H. Tong, X. Shen, W. Chen, J. Yan, J. Hu, Acta Biomater. 5, 2693–2703 (2009)

  40. 40.

    K. Maji, S. Dasgupta. Comparative study on Mechanical Strength of Macroporous Hydroxyapatite-Biopolymer Based Composite Scaffold. International Conference on Advances in Engineering and Technology (ICAET'2014), Singapore, 29–30 March 2014.

  41. 41.

    M. Jayabalan, K.T. Shalumon, M. Mitha, K. Ganesan, M. Epple, Acta Biomater. 6(3), 763–775 (2009)

  42. 42.

    J. Zheng, C.Z. Wang, X.X Wang, H.Y. Wang, H. Zhuang, F. Yao. React. Funct. Polym. 67, 780–788 (2007).

  43. 43.

    A. Marques, R.L. Reis, Mater. Sci. Eng. C 25, 215–229 (2005)

  44. 44.

    H. Bundela, eXpress Polym. Lett. 2, 201–213 (2008)

  45. 45.

    Y.C. Nho, O.H. Kwon, C. Jie, Radiat. Phys. Chem. 64, 67–75 (2002)

  46. 46.

    A. Chaturvedi, A.K. Bajpai, J. Bajpai, S.K. Singh, Mater. Sci. Eng. C 65, 408–418 (2016)

  47. 47.

    X. Yang, K. Yang, S. Wu, X. Chen, F. Yu, J. Li, M. Ma, Z. Zhu, Radiat. Phys. Chem. 79, 606–611 (2010)

  48. 48.

    B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, V. Asokan, Arab. J. Chem. 11, 645–654 (2016)

  49. 49.

    T. Nagyné-Kovács, L. Studnicka, A. Kincses, G. Spengler, M. Molnár, M. Tolner, I. Endre Lukács, I. Szilágyi, G. Pokol, Ceram. Int. 44, 22976–22982 (2018)

  50. 50.

    G. Devanand Venkatasubbu, S. Ramasamy, V. Ramakrishnan, J. Kumar, 3 Biotech 1, 173–186 (2011)

  51. 51.

    M.P. Ginebra, T. Traykova, J.A. Planell, J. Controlled Release 113, 102–110 (2006)

  52. 52.

    E. Kontonasaki, T. Zorba, L. Papadopoulou, E. Pavlidou, X. Chatzistavrou, K. Paraskevopoulos, P. Koidis, Cryst. Res. Technol. 37, 1165–1171 (2002)

  53. 53.

    I.B. Leonor, H.-M. Kim, F. Balas, M. Kawashita, R.L. Reis, T. Kokubo, T. Nakamura, J. Mater. Chem. 17, 4057–4063 (2007)

  54. 54.

    P. Zhu, Y. Masuda, K. Koumoto, Biomaterials 25, 3915–3921 (2004)

Download references

Acknowledgements

The authors express their deep gratitude to Dr. Asmaa Abu-Bakr Hassan, Associate Professor, Radiation Biology Department, National Center for Radiation Research and Technology, for performing cytotoxicity evaluation and her fruitful discussion. Also, deep gratitude to Dr. Eman Araby, Associate Professor, Radiation Microbiology Department, National Center for Radiation Research and Technology, for antibacterial assessment and her good interpretation and discussion.

Author information

Correspondence to Amany I. Raafat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raafat, A.I., Kamal, H., Sharada, H.M. et al. Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study. J Inorg Organomet Polym (2019). https://doi.org/10.1007/s10904-019-01418-3

Download citation

Keywords

  • Radiation copolymerization
  • Scaffold
  • Bone regeneration
  • Acacia gum
  • Gelatin
  • Mg-doped hydroxyapatite