Advertisement

Ultrasonic Assisted Cerium Oxide/Graphene Oxide Hybrid: Preparation, Anti-proliferative, Apoptotic Induction and G2/M Cell Cycle Arrest in HeLa Cell Lines

  • J. SaranyaEmail author
  • B. S. Sreeja
  • G. Padmalaya
  • S. Radha
  • T. Manikandan
Article
  • 11 Downloads

Abstract

In this work, we developed a morphology involved cerium oxide/graphene oxide hybrid (CeO2/GO hybrid) nanocomposite based system using the ultrasonic method. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) have been performed to analyse the developed nanocomposite. The crystallite size of the hybrid was found to be 3.86 nm comparably lower than that of pure CeO2 (7.4 nm) which was confirmed by X-Ray diffraction analysis. The presence of functional groups was affirmed using FTIR analysis. The morphological features of pure CeO2 and hybrid were verified using FESEM. FESEM images reveals that, pure CeO2 nanoparticles are highly agglomerated and CeO2/GO hybrid possess nano-rectangular morphology. In addition, the developed hybrid system has been analysed to evaluate its scavenging anti-cancer potential against HeLa cell lines at various concentrations and incubation intervals using antiproliferative assay test. The test results reveals that, as the concentration of hybrid nanocomposite increases the cell death also increases. Here, “IC50” refers to lowest concentration of sample (CeO2/GO hybrid) at which nearing 50% of HeLa cells remains alive and rest of the cells remains dead. In our study, 31.2 µg/ml is considered to be IC50 value for which nearing 50% of cells remains dead and it has been attained at an incubation period of 72 h. An dual acridine orange/ethidium bromide (AO/EB) fluorescent staining, was performed at two specific concentrations (i.e.) 125 µg/ml and 1000 µg/ml of developed hybrid nanocomposite to identify apoptosis-associated changes of cell membranes during the process of apoptosis. Change in color for both live cells (green) and dead cells (red) were viewed using fluorescence microscopy. The quantitative analysis was done using flow cytometry (FACS study) to investigate the cell cycle at which maximum number of HeLa cells has been killed due to interaction with developed CeO2/GO hybrid. The FACS study test results reveals that, maximum cancer cells were arrested at R3 (G2/M) phase. Hence, the developed CeO2/GO hybrid has shown improved anticancer efficacy against HeLa cell line and thus it acts as a better therapeutic agent for cervical cancer diagnosis.

Keywords

Nanocomposite HeLa cells Cervical cancer CeO2/GO hybrid nanosystem Flow cytometry 

Notes

References

  1. 1.
    J. Chen, G. Wenyi, L. Yang, C. Chen, R. Shao, X. Kewei, X. Zhi Ping, Nanotechnology in the management of cervical cancer. Rev. Med. Virol. 25, 72–83 (2015)PubMedCrossRefGoogle Scholar
  2. 2.
    M. Zaman, N. Chauhan, M. Yallapu, R. Gara, D. Maher, S. Kumari, M. Sikander, S. Khan, N. Zafar, M. Jaggi, S. Chauhan, Curcumin nanoformulation for cervical cancer treatment. Sci. Rep 6, 20051 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    H.J. K, K. Shin, M. Soh, H. Chang, J. Kim, J. Lee, G. Ko, B. Kim, D. Kim, T. Hyeon, Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles. Adv. Mater. 30, 1704290 (2018)CrossRefGoogle Scholar
  4. 4.
    L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–770 (2008)PubMedCrossRefGoogle Scholar
  5. 5.
    J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16(1), 84 (2018)CrossRefGoogle Scholar
  6. 6.
    K. McNamara, S.A.M. Tofail, Nanoparticles in biomedical applications. Adv. Phys. X 2, 54–88 (2017)Google Scholar
  7. 7.
    H. Sharma, P.K. Mishra, S. Talegaonkar, B. Vaidya, Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov. Today 20, 1143–1151 (2015)PubMedCrossRefGoogle Scholar
  8. 8.
    R. Kannan, A. Kim, S. Eo, S. Kang, D. Yoo, Facile one-step synthesis of cerium oxide-carbon quantum dots/RGO nanohybrid catalyst and its enhanced photocatalytic activity. Ceram. Int. 43, 3072–3079 (2017)CrossRefGoogle Scholar
  9. 9.
    A.P. Subramanian, S.K. Jaganathan, E. Supriyanto, Overview on in vitro and in vivo investigations of nanocomposite based cancer diagnosis and therapeutics. RSC Adv. 5, 72638–72652 (2015)CrossRefGoogle Scholar
  10. 10.
    X. Can, Q. Xiaogang, Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 4, e90 (2014)Google Scholar
  11. 11.
    F. Corsi, F. Caputo, E. Traversa, L. Ghibelli, Not only redox: the multifaceted activity of cerium oxide nanoparticles in cancer prevention and therapy. Front. Oncol. 8, 309–316 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Y. Sasikumar, A. Madhan Kumar, Z. Gasem, E. Ebenso, Hybrid nanocomposite from aniline and CeO2 nanoparticles: surface protective performance on mild steel in acidic environment. Appl. Surf. Sci. 330, 207–215 (2015)CrossRefGoogle Scholar
  13. 13.
    S. He Liying, J. Yumin, S. Shikao, Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review. J. Rare Earths 33, 791–800 (2015)CrossRefGoogle Scholar
  14. 14.
    E. Nourmohammadi, H. Khoshdel-sarkarizi, R. Nedaeinia, H.R. Sadeghnia, L. Hasanzadeh, M. Darroudi, R. Kazemi oskuee, Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. J. Cell. Physiol. 234(4), 4987–4996 (2019)PubMedCrossRefGoogle Scholar
  15. 15.
    S. Mittal, A. Pandey, Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed. Res. Int. (2014).  https://doi.org/10.1155/2014/891934 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    J. Das, Y.-J. Choi, J. Han, M. Abu Musa, T. Reza, J.-H. Kim, Nanoceria-mediated delivery of doxorubicin enhances the antitumour efficiency in ovarian cancer cells via apoptosis. Sci. Rep. 7, 9513 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez, Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. Engl. 48, 2308–2312 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Z. Diaconeasa, L. Barbu-tudoran, C. Coman, L. Leopold, A. Mesaros, O. Pop, D. Rugină, C. Socaciu, Evaluation of antiproliferative potential of cerium oxide nanoparticles on hela human cervical tumor cell. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 72(1), 109–111 (2015)Google Scholar
  19. 19.
    M. Pešić, A. Podolski-Renić, S. Stojković, B. Matović, D. Zmejkoski, V. Kojić, G. Bogdanović, A. Pavićević, M. Mojović, A. Savić, I. Milenković, A. Kalauzi, K. Radotic, Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chem. Biol. Interact. 232, 85–93 (2015)PubMedCrossRefGoogle Scholar
  20. 20.
    T. Manikandan, G. Padmalaya, S. Mahalakshmi, A.S. Nivethitha, V. Pavithran, S. Perumal, B.S. Sreeja, P. Senthil Kumar, Facile hydrothermal bio-synthesis of cellulose acetate templated CuS nanorods like fibres: antibacterial, cytotoxicity effects and DNA cleavage properties against A549 lung cancer cells. IET Nanobiotechnol. (2019).  https://doi.org/10.1049/iet-nbt:2019.0193 CrossRefGoogle Scholar
  21. 21.
    G. Padmalaya, B.S. Sreeja, P. Dinesh Kumar, S. Radha, V. Poornima, M. Arivanandan, S. Shrestha, T.S. Uma, A facile synthesis of cellulose acetate functionalized zinc oxide nanocomposite for electrochemical sensing of cadmium ions. J. Inorg. Organomet. Polym. 29, 989–999 (2018)CrossRefGoogle Scholar
  22. 22.
    G. Padmalaya, B.S. Sreeja, S. Shoba, R. Rajavel, S. Radha, M. Arivanandan, S. Shrestha, Synthesis of micro-dumbbell shaped rGO/ZnO composite rods and its application towards as electrochemical sensor for the simultaneous determination of ammonia and formaldehyde using hexamine and its structural analysis. J. Inorg. Organomet. Polym. (2019).  https://doi.org/10.1007/s10904-019-01224-x CrossRefGoogle Scholar
  23. 23.
    K. Patel, R. Singh, H.-W. Kim, Carbon-based nanomaterials as an emerging platform for theranostics. Mater. Horiz. 6, 434–469 (2019)CrossRefGoogle Scholar
  24. 24.
    Yu. Huitao, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016)CrossRefGoogle Scholar
  25. 25.
    N. Sharma, V. Sharma, Y. Jain, M. Kumari, S.K. Ragini Gupta, K. Sharma, Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol. Symp. 376, 1700006–1700011 (2017)CrossRefGoogle Scholar
  26. 26.
    Y. Gong, D. Li, F. Qiang, C. Pan, Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci. Mater. Int. 25, 379–385 (2015)CrossRefGoogle Scholar
  27. 27.
    X. Zhao, L. Yang, X. Xiaorui Li, L. Jia, J. Zeng, J. Guo, P. Liu, Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug. Bioconj. Chem. 26, 28–136 (2014)Google Scholar
  28. 28.
    K. Yang, L. Feng, H. Hong, W. Cai, Z. Liu, Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc. 8, 2392–2403 (2013)PubMedCrossRefGoogle Scholar
  29. 29.
    V.K. Gupta, M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, Electrochemical studies on graphene oxide-supported metallic and bimetallic nanoparticles for fuel cell applications. J. Mol. Liq. 191, 172–176 (2014)CrossRefGoogle Scholar
  30. 30.
    Z. Yan, J. Wang, R. Zou, L. Liu, Z. Zhang, X. Wang, Hydrothermal synthesis of CeO2 nanoparticles on activated carbon with enhanced desulfurization activity. Energy Fuels 26, 5879–5886 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Elçin, M.L. Yola, T. Eren, B. Girgin, N. Atar, Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, Morin and Rutin in grape wine. Electroanalysis 28, 611–619 (2016)CrossRefGoogle Scholar
  32. 32.
    G. Renu, V.V. Divya Rani, S.V. Nair, K.R.V. Subramanian, V.K. Lakshmanan, Development of cerium oxide nanoparticles and its cytotoxicity in prostate cancer cells. Adv. Sci. Lett. 5, 1–9 (2012)CrossRefGoogle Scholar
  33. 33.
    Y. Gao, K. Chen, J.-l. Ma, F. Gao, Cerium oxide nanoparticles in cancer. Onco Targets Ther. 7, 835–840 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    R. Thangam, M. Sathuvan, A. Poongodi, V. Suresh, K. Pazhanichamy, S. Sivasubramanian, N. Kanipandian, G. Nalini, R. Rengasamy, R. Thirumurugan, S. Kannan, Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions. Carbohydr. Polym. 107, 138–150 (2014)PubMedCrossRefGoogle Scholar
  35. 35.
    D.D. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Investigating the effect of Mn-doped CeO2 nanoparticles by co-precipitation method. Appl. Phys. A 124(2), 86 (2018)CrossRefGoogle Scholar
  36. 36.
    Y. Duan, H. Pang, Y. Zhang, J. Chen, T. Wang, Morphology-controlled synthesis and microwave absorption properties of β-MnO2 microncube with rectangular pyramid. Mater. Charact. 112, 206–212 (2016)CrossRefGoogle Scholar
  37. 37.
    L. Wang, R. Zhang, Y. Jiang, Yu. Hua Tian, K. Tan, Yu. Zhifeng, W. Li, Interfacial synthesis of micro-cuboid Ni0.55Co0.45C2O4 solid solution with enhanced electrochemical performance for hybrid supercapacitors. Nanoscale 11, 13894–13902 (2019)PubMedCrossRefGoogle Scholar
  38. 38.
    G. Mahendran, K. Ponnuchamy, Coumarin–gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells. Appl. Nanosci. 8, 447–453 (2018)CrossRefGoogle Scholar
  39. 39.
    R. Wahab, F. Khan, A. Al-Khedhairya, Hematite iron oxide nanoparticles: apoptosis of myoblast cancer cells and their arithmetical assessment. RSC Adv. 8, 24750–24759 (2018)CrossRefGoogle Scholar
  40. 40.
    E. Montiel-Eulefi, T. Jara, M. Garcés, P. Leal, Cytotoxic effect of double emulsion (W/O/W) CuSO4 loaded PLA nanoparticles on MKN-45 gastric adenocarcinoma cell line. Int. J. Morphol. 32, 61–69 (2014)CrossRefGoogle Scholar
  41. 41.
    R. Gupta, H. Xie, Nanoparticles in daily life: applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol. 37, 209–230 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    R. Wahab, F. Khan, A. Gupta, H. Wiggers, Q. Saqui, M. Faisal, S. Ansari, Microwave plasma-assisted silicon nanoparticles: cytotoxic, molecular, and numerical responses against cancer cells. RSC Adv. 9, 13336–13347 (2019)CrossRefGoogle Scholar
  43. 43.
    N. Kanipandian, D. Li, S. Kannan, Induction of intrinsic apoptotic signaling pathway in A549 lung cancer cells using silver nanoparticles from Gossypium hirsutum and evaluation of in vivo toxicity. Biotechnol Rep 23, e00339–e00353 (2019)CrossRefGoogle Scholar
  44. 44.
    B. George, N. Kumar, H. Abrahamse, S. Ray, Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Sci Rep 8, 14368 (2018)CrossRefGoogle Scholar
  45. 45.
    H. Sun, J. Jia, C. Jiang, S. Zhai, Gold nanoparticle-induced cell death and potential applications in nanomedicine. Int. J. Mol. Sci. 19, 754–774 (2018)PubMedCentralCrossRefGoogle Scholar
  46. 46.
    M. Kalimutho, A. Minutolo, S. Grelli, A. Formosa, G. Sancesario, A. Valentini, G. Federici, S. Bernardini, Satraplatin (JM-216) mediates G2/M cell cycle arrest and potentiates apoptosis via multiple death pathways in colorectal cancer cells thus overcoming platinum chemo-resistance. Cancer Chemother. Pharmacol. 67, 1299–1312 (2011)PubMedCrossRefGoogle Scholar
  47. 47.
    J. Park, M. Ha, N. Yang, T. Yoon, Flow cytometry-based quantification of cellular Au nanoparticles. Anal. Chem. 89, 2449–2456 (2017)PubMedCrossRefGoogle Scholar
  48. 48.
    A. Kermanizadeh, K. Jantzen, D.M. Brown, P. Møller, S. Loft, A flow cytometry-based method for the screening of nanomaterial-induced reactive oxygen species production in leukocytes subpopulations in whole blood. Basic Clin. Pharmacol. Toxicol. 122, 149–156 (2018)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. Saranya
    • 1
    Email author
  • B. S. Sreeja
    • 2
  • G. Padmalaya
    • 2
  • S. Radha
    • 2
  • T. Manikandan
    • 1
  1. 1.Department of Electronics and Communication EngineeringRajalakshmi Engineering CollegeThandalamIndia
  2. 2.Department of Electronics and Communication EngineeringSSN College of EngineeringKalavakkamIndia

Personalised recommendations