Advertisement

Green Synthesis of Silver Nanoparticles from Leaf Extract of Nyctanthes arbor-tristis L. and Assessment of Its Antioxidant, Antimicrobial Response

  • Awadhesh Kumar Mishra
  • Kavindra Nath TiwariEmail author
  • Rajesh Saini
  • Pradeep Kumar
  • Sunil Kumar Mishra
  • Virendra Bahadur Yadav
  • Gopal Nath
Article
  • 30 Downloads

Abstract

The UPLC-Q-TOF–MS/MS analysis of ethanol extract of leaf confirmed the presence of important flavonoids like rutin (RT 5.95), hesperidin (RT 5.99), quercitrin (RT 6.33) and kaempferol-3-O-glucoside (RT 6.82). Photo-induced green synthesis of silver nanoparticles was reported in Nycanthes arbor-tristis. Nanoparticles were efficiently synthesized after mixing of 1% ethanol leaf extract and 1 mM silver nitrate solution under 10 min light exposure at room temperature. The UV–Vis spectrum of the brown colored reaction mixture showed sharp surface plasmon resonance at 460 nm. It confirmed the biosynthesis of silver nanoparticles. Nanoparticles were characterized by using SEM, TEM, and EDX. The results suggest that synthesized nanoparticles lie in the range of 10–50 nm. XRD, SAED and AFM data confirmed the polycrystalline nature of biosynthesized nanoparticles. Silver nanoparticles exhibited strong antibacterial activity than extract. All bacterial clinical isolates were sensitive to nanoparticles. Methicilin resistant Staphylococcus aureus was most susceptible than other isolates. The silver nanoparticles also exhibited good free radical scavenging activity (EC50 670.67 ± 15.70 µg/ml).

Keywords

Antibacterial Energy dispersive X-ray Free radical scavenging assay Nycanthes arbor-tristis Silver nanoparticle UPLC-Q-TOF–MS/MS 

Abbreviations

EDX

Energy dispersive X-ray

DPPH

2, 2-diphenyl-1-picrylhydrazyl

FRSA

Free radical scavenging assay

MRSA

Methicillin resistant Staphylococcus aureus

SPR

Surface plasmon resonance

XRD

X-ray diffraction

Notes

Acknowledgements

The author (AKM) wishes to thanks University Grants Commission (UGC), New Delhi for financial support. I would like to acknowledge the Central Instrument Laboratory (CIL), Indian Institute of Technology, BHU Varanasi for instrumental facilities of SEM, TEM and XRD.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    G. Lakshmanan, A. Sathiyaseelan, P.T. Kalaichelvan, K. Murugesan, Karbala Int. J. Mod. Sci. 4, 61–68 (2018)CrossRefGoogle Scholar
  2. 2.
    A. Tripathi, S. Kumari, A. Kumar, Appl. Nanosci. 6, 61–69 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Sathishkumar, K. Sneha, I.S. Kwak, J. Mao, S.J. Tripathy, Y.S. Yun, J. Hazard. Mater. 171, 400–404 (2009)PubMedCrossRefGoogle Scholar
  4. 4.
    H.J. Lee, G. Lee, N.R. Jang, J.H. Yun, J.Y. Song, B.S. Kim, Nanotechnology 1, 371–374 (2011)Google Scholar
  5. 5.
    P. Velmurugan, M. Cho, S.S. Lim, S.K. Seo, H. Myung, K.S. Bang et al., Mater. Lett. 138, 272–275 (2015)CrossRefGoogle Scholar
  6. 6.
    B. Kumar, K. Smita, L. Cumbal, A. Debut, Saudi. J. Biol. Sci. 24, 45–50 (2017)Google Scholar
  7. 7.
    V.K. Sharma, R.A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 145, 83–96 (2009)PubMedCrossRefGoogle Scholar
  8. 8.
    K. Yokohama, D.R. Welchons, Nanotechnology 18, 105101–105107 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Jeyaraj, G. Sathishkumar, G. Sivanandhan, A.D. Mubarak, M. Rajesh, R. Arun et al., Colloids Surf. B 106, 86–92 (2013)CrossRefGoogle Scholar
  10. 10.
    N. HanumantaRao, N. Lakshmidevi, S.V.N. Pammi, P. Kollu, S. Ganapaty, P. Lakshmi, Mater. Sci. Eng. C 62, 553–557 (2016)CrossRefGoogle Scholar
  11. 11.
    K.L. Niraimathi, V. Sudha, R. Lavanya, P. Brindha, Colloids Surf. B 102, 288–291 (2013)CrossRefGoogle Scholar
  12. 12.
    M.M.H. Khalil, E.H. Ismail, K.Z. El-Baghdady, D. Mohamed, Arab. J. Chem. 7, 1131–1139 (2014)CrossRefGoogle Scholar
  13. 13.
    K.S. Kavitha, B. Syed, D. Rakshith, H.U. Kavitha, H.C. Yashwantha Rao, B.P. Harini et al., Int. Res. J. Biol. Sci. 2, 66–76 (2013)Google Scholar
  14. 14.
    S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000)PubMedCrossRefGoogle Scholar
  15. 15.
    R. Abbai, R. Mathiyalagan, J. Markus, Y.J. Kim, C. Wang, P. Singh et al., Int. J. Nanomed. 11, 3131–3143 (2016)CrossRefGoogle Scholar
  16. 16.
    O.V. Kharissova, H.V. Rasika Dias, B.I. Kharisov, B.O. Perez, V.M.J. Perez, Trend. Biotechnol. 31, 240–248 (2013)PubMedCrossRefGoogle Scholar
  17. 17.
    P.S. Ramesh, T. Kokila, D. Geetha, Spectrochim. Acta A 142, 339–343 (2015)CrossRefGoogle Scholar
  18. 18.
    K. Li, C. Ma, T. Jian, H. Sun, L. Wang, H. Xu et al., J. Food Sci. Technol. 54, 3569–3576 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    J.S. Valli, B. Vaseeharan, Mater. Lett. 82, 171–173 (2012)CrossRefGoogle Scholar
  20. 20.
    F. Benakashani, A.R. Allafchian, S.A.H. Jalali, Karbala Int. J. Mod. Sci. 2, 251–258 (2016)CrossRefGoogle Scholar
  21. 21.
    K. Venugopal, H.A. Rather, K. Rajagopal, M.P. Shanthi, K. Sheriff, M. Illiyas et al., J. Photochem. Photobiol., B 167, 282–289 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Raja, V. Ramesh, V. Thivaharan, Arab. J. Chem. 10, 253–261 (2017)CrossRefGoogle Scholar
  23. 23.
    J.S. Rathee, S.A. Hassarajani, S. Chattopadhyay, Food Chem. 103, 1350–1357 (2007)CrossRefGoogle Scholar
  24. 24.
    A. Vyas, R. Sarin, Int. J. Pharm. Bio Sci. 4, 201–206 (2013)Google Scholar
  25. 25.
    A.W. Bauer, W.M.M. Kirby, J.C. Serris, M. Turck, Am. J. Clin. Pathol. 45, 493–496 (1966)PubMedCrossRefGoogle Scholar
  26. 26.
    W. Williams Brand, M.E. Cuvelier, C. Berset, LWT Food Sci. Technol. 28, 25–30 (1995)CrossRefGoogle Scholar
  27. 27.
    S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Res. Pharm. Sci. 9, 385–406 (2014)PubMedPubMedCentralGoogle Scholar
  28. 28.
    W.H. DeJong, P.J.A. Borm, Int. J. Nanomed. 3, 133–149 (2008)CrossRefGoogle Scholar
  29. 29.
    C. Saraiva, C. Praça, R. Ferreira, T. Santos, L. Ferreira, L. Bernardino, J. Control. Release 235, 34–47 (2016)PubMedCrossRefGoogle Scholar
  30. 30.
    S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, J. Adv. Res. 7, 17–28 (2016)PubMedCrossRefGoogle Scholar
  31. 31.
    V. Manikandan, P. Velmurugan, J.H. Park, W.S. Chang, Y.J. Park, P. Jayanthi et al., 3 Biotech 7, 72 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S.P. De, A. Misra, Colloids Surf. A 339, 134–139 (2009)CrossRefGoogle Scholar
  33. 33.
    C. Dong, X. Zhang, H. Cai, C. Cao, Optik 127, 10378–10388 (2016)CrossRefGoogle Scholar
  34. 34.
    S.M. Roopan, G. Madhumitha, A. Abdul Rahuman, C. Kamaraj, A. Bharathi, T.V. Surendra, Ind. Crop. Prod. 43, 631–635 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Ronavari, D. Kovacs, N. Igaz, C. Vagvolgyi, I.M. Boros, Z. Konya et al., Int. J. Nanomed. 12, 871–883 (2017)CrossRefGoogle Scholar
  36. 36.
    G. Bagherzade, M.M. Tavakoli, M.H. Namaei, Asian Pac. J. Trop. Biomed. 7, 227–233 (2017)CrossRefGoogle Scholar
  37. 37.
    N.H. Rakotoarivelo, F. Rakotoarivony, A.V. Ramarosandratana, V.H. Jeannoda, A.R. Kuhlman, A. Randrianasolo et al., J. Ethnobiol. Ethnomed. 11, 68 (2015).  https://doi.org/10.1186/s13002-015-0050-2 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    G.B. Mahady, Curr. Pharm. Design. 11, 2405–2427 (2005)CrossRefGoogle Scholar
  39. 39.
    N.C.C. Silva, J.A. Fernandes, J. Venom. Anim. Toxins Incl. Trop. Dis. 16, 402–413 (2010)CrossRefGoogle Scholar
  40. 40.
    A. Ganeshpurkar, A.K. Saluja, Saudi Pharm. J. 25, 149–164 (2017)PubMedCrossRefGoogle Scholar
  41. 41.
    T.P. Tim Cushnie, A.J. Lamb, Int. J. Antimicrob. Agents 26, 343–356 (2005)CrossRefGoogle Scholar
  42. 42.
    P.K. Wilmsen, D.S. Spada, M. Salvador, J. Agric. Food Chem. 53, 4757–4761 (2005)PubMedCrossRefGoogle Scholar
  43. 43.
    A. Corciova, C. Ciobanu, A. Poiata, C. Mircea, A. Nicolescu, M. Drobota, C.D. Varganici, T. Pinteala, N. Marangoci, J. Incl. Phenom. Macrocycl. Chem. 81, 71–84 (2015)CrossRefGoogle Scholar
  44. 44.
    S. Kumar, A.K. Pandey, Sci. World J. 2013, 1–16 (2013).  https://doi.org/10.1155/2013/162750 CrossRefGoogle Scholar
  45. 45.
    H. Arima, H. Ashida, G. Danno, Biosci. Biotechnol. Biochem. 66, 1009–1014 (2002)PubMedCrossRefGoogle Scholar
  46. 46.
    S. Akroum, D. Bendjeddou, D. Satta, K. Lalaoui, Int. J. Green Pharm. 4, 165–169 (2010)CrossRefGoogle Scholar
  47. 47.
    N. Gogoi, P.J. Babu, C. Mahanta, U. Bora, Mater. Sci. Eng. C 46, 463–469 (2015)CrossRefGoogle Scholar
  48. 48.
  49. 49.
    F.A. Qais, A. Shafiq, H.M. Khan, F.M. Husain, R.A. Khan, B. Alenazi, A. Alsalme, I. Ahmad, Bioinorg. Chem. Appl. 2019, 1–11 (2019)CrossRefGoogle Scholar
  50. 50.
    S. Pal, Y.K. Tak, J.M. Song, Appl. Environ. Microbiol. 73, 1712–1720 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    H.M.M. Ibrahim, J. Radiat. Res. Appl. Sci. 8, 265–275 (2015)CrossRefGoogle Scholar
  52. 52.
    K.S. Mukunthan, E.K. Elumalai, T.N. Patel, V.R. Murty, Asian Pac. J. Trop. Biomed. 1, 270–274 (2011)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BotanyMMV, Banaras Hindu UniversityVaranasiIndia
  2. 2.Department of Pharmaceutical Engineering and TechnologyIndian Institute of Technology, Banaras Hindu UniversityVaranasiIndia
  3. 3.Department of MicrobiologyInstitute of Medical Sciences, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations