Advertisement

In-Situ Synthesis of a Novel Bioresorbable Sodium Alginate/Hydroxyapatite–Calcium Pyrophosphate Nanocomposite as Bone Replacement

  • Esmaeil SalimiEmail author
Article
  • 13 Downloads

Abstract

The aim of this study was to develop a new bioresorbable nanocomposite for bone defect treatment. Despite different orthopaedic applications of hydroxyapatite (HA), the slow resorption rate and the instability of HA particles have limited its performance in some particular applications. Therefore, a novel hydroxyapatite–calcium pyrophosphate (HA–CPP)/Alginate nanocomposite was synthesized in this study using the chemical precipitation method. X-ray diffraction pattern indicated the presence of HA and CPP crystals in the composite. Transmission electron microscopy images also showed a combination of nano-size particles with different morphologies. Evaluation of the stability of the prepared samples under physiological condition revealed that the resorption rate was raised by increasing the content of calcium pyrophosphate in the composite. The obtained new composite, which contained the metastable CPP phase, could be the prospective biomaterial for bone replacement.

Keywords

Nanocomposite Calcium pyrophosphate Bioresorbable Bone replacement 

Notes

References

  1. 1.
    T. Kokubo, H.-M. Kim, M. Kawashita, Biomaterials 24, 13 (2003)Google Scholar
  2. 2.
    Q. Liu, J.R. de Wijn, C.A. van Blitterswijk, Biomaterials 18, 19 (1997)CrossRefGoogle Scholar
  3. 3.
    Y.E. Greish, P.W. Brown, J. Biomed. Mater. Res. 52, 4 (2000)CrossRefGoogle Scholar
  4. 4.
    M. Sivakumar, K.P. Rao, Biomaterials 23, 15 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Sivakumar, K.P. Rao, J. Biomed. Mater. Res. A 65, 2 (2003)Google Scholar
  6. 6.
    A.R. Wittkampf, J. Oral Maxillofac. Surg. 46, 11 (1988)CrossRefGoogle Scholar
  7. 7.
    K. Zhou, X. Zhang, Z. Chen, L. Shi, W. Li, Ceram. Int. 41, 10 (2015)Google Scholar
  8. 8.
    D. Porrelli, A. Travan, G. Turco, E. Marsich, M. Borgogna, S. Paoletti, I. Donati, Macromol. Mater. Eng. 300, 10 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Venkatesan, I. Bhatnagar, P. Manivasagan, K.-H. Kang, S.-K. Kim, Int. J. Biol. Macromol. 72, 269 (2015)PubMedCrossRefGoogle Scholar
  10. 10.
    B. Safikhani, F. Buazar, S.M. Hosseini, S. Mohammad Mousavi, Int. J. Biol. Macromol. 116, 786 (2018)CrossRefGoogle Scholar
  11. 11.
    D. Arcos, A.R. Boccaccini, M. Bohner, A. Diez-Perez, M. Epple, E. Gomez-Barrena, A. Herrera, J.A. Planell, L. Rodriguez-Manas, M. Vallet-Regi, Acta Biomater. 10, 5 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Tadic, M. Epple, Biomaterials 25, 6 (2004)Google Scholar
  13. 13.
    H.-S. Ryu, H.-J. Youn, K.S. Hong, B.-S. Chang, C.-K. Lee, S.-S. Chung, Biomaterials 23, 3 (2002)CrossRefGoogle Scholar
  14. 14.
    L. Grover, A. Wright, U. Gbureck, A. Bolarinwa, J. Song, Y. Liu, D. Farrar, G. Howling, J. Rose, J. Barralet, Biomaterials 34, 6631 (2013)PubMedCrossRefGoogle Scholar
  15. 15.
    J. Zhang, Q. Wang, A. Wang, Acta Biomater. 6, 2 (2010)Google Scholar
  16. 16.
    G.T. Grant, E.R. Morris, D.A. Rees, P.J.C. Smith, D. Thom, FEBS Lett. 32, 1 (1973)CrossRefGoogle Scholar
  17. 17.
    J.D. Hartgerink, E. Beniash, S.I. Stupp, Science 294, 5547 (2001)CrossRefGoogle Scholar
  18. 18.
    K. Sato, Y. Kumagai, J. Tanaka, J. Biomed. Mater. Res. 50, 1 (2000)CrossRefGoogle Scholar
  19. 19.
    T. Windarti, Taslimah, A. Haris, Y. Astuti and A. Darmawan, IOP Conference Series: Materials Science and Engineering 172 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Zhao, W. He, Y. Wang, Y. Yue, X. Gao, Z. Li, S. Yan, W. Zhou, X. Zhang, Mater. Chem. Phys. 111, 265 (2008)CrossRefGoogle Scholar
  21. 21.
    Y.N. Dai, P. Li, J.P. Zhang, A.Q. Wang, Q. Wei, J. Biomed. Mater. Res. B 86, 2 (2008)Google Scholar
  22. 22.
    M.G. Ma, Y.J. Zhu, J. Chang, J. Phys. Chem. B 110, 29 (2006)Google Scholar
  23. 23.
    H.-H. Jin, C.-H. Lee, W.-K. Lee, J.-K. Lee, H.-C. Park, S.-Y. Yoon, Mater. Lett. 62, 1630 (2008)CrossRefGoogle Scholar
  24. 24.
    C.C. Ribeiro, C. Barrias, M. Barbosa, Biomaterials 25, 18 (2004)CrossRefGoogle Scholar
  25. 25.
    N. Kanasan, S. Adzila, N. AzimahMustaffa, P. Gurubaran, Proc. Eng. 184, 442 (2017)CrossRefGoogle Scholar
  26. 26.
    T. Balic-Zunic, M.R. Christoffersen, J. Christoffersen, Acta Crystallogr. Sect. B 56, 953 (2000)CrossRefGoogle Scholar
  27. 27.
    M. Rajkumar, R. Venkatachalam, Mater. Charact. 62, 112 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Luo, G. Zuo, G. Xiong, C. Li, C. Wu, Y. Wan, Mater. Technol. 32, 2 (2017)Google Scholar
  29. 29.
    I. Khawaja, Q. Choudhry, D.A. Mahmood, Z. Gilani, S. Shahid, M. Farooq, Optoelectron. Adv. Mater. Rapid Commun. 9, 1171 (2015)Google Scholar
  30. 30.
    R. Murugan, S. Ramakrishna, J. Cryst. Growth 274, 1 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Chemical and Materials EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations