Advertisement

A New La(III)-MOF for Efficient Dye Photodegradation and Protective Effect on Exercise Pain After Total Knee Arthroplasty by Reducing Nicotinic Acetylcholine Receptors Expression

  • Wei Ren
  • Feng Han
  • Ji-Ke Lu
  • Yong-Cheng HuEmail author
Article
  • 16 Downloads

Abstract

The creation of multifunctional metal-based coordination complexes has been a hot topic in the fields of material science and biomedicine for their great potential application, metal–organic frameworks (MOFs) process the features of both coordination complexes and semiconductor materials might fit the requirements of the targeted materials. In this study, the assembly of the light-harvesting linker with La(III) ion produced a three-dimensional MOF [La2(adda)3(H2O)2]n (1) (H2adda = (2E,2′E)-3,3′-(anthracene-9,10-diyl) diacrylic acid), which could be applied as an effective catalyst for the Rhodamine B’s degradation. The treatment effect of compound 1 on exercise pain after total knee arthroplasty (TKA) on rat model was evaluated. The times of rats licking the surgery tissues was counted in the analgesic animal model. The content of the nicotinic acetylcholine receptors on presynaptic membrane was determined by RT-PCR. The possible binding interaction of the drug-like La(III) complex to the DNA structure has been further reviewed by molecular docking simulation.

Keywords

La(III) complex Light-harvesting ligand Dye photodegradation Analgesic activity Molecular docking 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All the SPF animals were obtained from the Model Animal Research Center of Nanjing University (Nanjing, China). The operations conducted in this experiment were approved by the National Animal Ethics Committee under the guidance of the protocols.

References

  1. 1.
    Z. Li, S. Xiang, Y.Y. Bian, B. Feng, R. Zeng, X.S. Weng, Orthop. Surg. 11, 366–372 (2019)CrossRefGoogle Scholar
  2. 2.
    H. Li, G. Gao, R. Chen, X. Ge, S. Guo, L.Y. Hao, Int. J. Softw. Eng. Knowl. 29, 93–113 (2019)CrossRefGoogle Scholar
  3. 3.
    P. Moewis, H. Hommel, A. Trepczynski, L. Krahl, P. von Roth, G.N. Duda, Sci. Rep. 9, 9148 (2019)CrossRefGoogle Scholar
  4. 4.
    H. Xu, S. Zhang, J. Xie, Y. Lei, G. Cao, G. Chen, F. Pei, J. Orthop. Surg. Res. 14, 188 (2019)CrossRefGoogle Scholar
  5. 5.
    S. Guo, R. Chen, H. Li, T. Zhang, Y. Liu, Int. J. Softw. Eng. Knowl. 29, 139–175 (2019)CrossRefGoogle Scholar
  6. 6.
    Y. Feng, H. Fan, Z. Zhong, H. Wang, D. Qiu, Inorg. Chem. 55, 11987–11992 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Feng, M. Li, H. Fan, Q. Huang, D. Qiu, H. Shi, Dalton Trans. 44, 894–897 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Feng, L.F. Ma, L. Liu, S.Y. Xie, L.Y. Wang, Cryst. Growth Des. 13, 4469–4479 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Feng, R.F. Li, L.Y. Wang, S.W. Ng, G.Z. Qin, L.F. Ma, CrystEngComm 17, 7878–7887 (2015)CrossRefGoogle Scholar
  10. 10.
    J.P. Ma, S.Q. Wang, C.W. Zhao, Y. Yu, Y.B. Dong, Chem. Mater. 27, 3805–3808 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Yuan, J.S. Qin, H.Q. Xu, J. Su, D. Rossi, Y. Chen, L. Zhang, C. Lollar, Q. Wang, H.L. Jiang, D.H. Son, H. Xu, Z. Huang, X. Zou, H.C. Zhou, A.C.S. Cent, Science 4, 105–111 (2018)Google Scholar
  12. 12.
    H.N. Abdelhamid, Z. Huang, A.M. El-Zohry, H. Zheng, X. Zou, Inorg. Chem. 56, 9139–9146 (2017)CrossRefGoogle Scholar
  13. 13.
    E.H. Zhou, B.H. Li, W.X. Chen, Z. Luo, J. Liu, A. Singh, A. Kumar, J.C. Jin, J. Mol. Struct. 1149, 352–356 (2017)CrossRefGoogle Scholar
  14. 14.
    P. Wu, Y. Liu, Y. Li, M. Jiang, X. Li, Y. Shi, J. Wang, J. Mater. Chem. A. 4, 16349–16355 (2016)CrossRefGoogle Scholar
  15. 15.
    D.M. Chen, X.J. Zhang, CrystEngComm 21, 4696–4700 (2019)CrossRefGoogle Scholar
  16. 16.
    K. Wang, X. Ma, D. Shao, Z. Geng, Z. Zhang, Z. Wang, Cryst. Growth Des. 12, 3786–3791 (2012)CrossRefGoogle Scholar
  17. 17.
    S.M. Sheta, S.M. El-Sheikh, M.M. Abd-Elzaher, A.R. Wassel, Appl. Organomet. Chem. 33, e4777 (2019)CrossRefGoogle Scholar
  18. 18.
    F. Zhang, H. Yao, T. Chu, G. Zhang, Y. Wang, Y. Yang, Chemistry A 23, 10293–10300 (2017)Google Scholar
  19. 19.
    W. Pan, C. Gong, X. Zeng, C. Hu, Y. Zhang, D.-R. Zhu, H. Xu, H. Guo, J. Zhang, J. Xie, Polyhedron 169, 24–31 (2019)CrossRefGoogle Scholar
  20. 20.
    C. Zhang, Y. Yan, Q. Pan, L. Sun, H. He, Y. Liu, Z. Liang, J. Li, Dalton Trans. 44, 13340–13346 (2015)CrossRefGoogle Scholar
  21. 21.
    J.C. Jin, J. Wu, Y.X. He, B.-H. Li, J.Q. Liu, R. Prasad, A. Kumar, S.R. Batten, CrystEngComm 19, 6464–6472 (2017)CrossRefGoogle Scholar
  22. 22.
    G.C. Liu, H.X. Yu, X.X. Liu, M.Y. Wei, J.F. Lin, X. Wang, H.Y. Lin, X.W. Li, Polyhedron 145, 35–42 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Medical UniversityTianjinChina
  2. 2.Department of OrthropaedicBeijing United Family HospitalBeijingChina
  3. 3.Department of Trauma OrthopaedicZhangqiu People’s HospitalJinanChina
  4. 4.Department of Orthopedic OncologyTianjin HospitalTianjinChina

Personalised recommendations