Advertisement

Stability Enhancement of Silver Nanoparticles Through Surface Encapsulation via a Facile Green Synthesis Approach and Toxicity Reduction

  • Mahmuda AkterEmail author
  • A. K. M. Atique Ullah
  • Md. Shiblur Rahaman
  • Md. Mostafizur Rahman
  • Md. Tajuddin Sikder
  • Toshiyuki Hosokawa
  • Takeshi Saito
  • Masaaki Kurasaki
Article
  • 15 Downloads

Abstract

Persuaded by the necessity of reduction of toxicity, silver nanoparticles (Ag-NPs) were synthesized from the reaction between AgNO3 solution and Mizuna (Brassica rapa var. japonica) leaf extract. This study aimed to investigate the role of synthesis temperature on particle properties. Thus, four synthesis-temperatures, 25 °C (room temperature), 60 °C, 80 °C, and 100 °C were applied. Ag-NPs were characterized using ultraviolet–visible (UV–Vis) spectrophotometer, energy dispersive X-ray spectrometer, X-ray diffractometer, transmission electron microscope, atomic absorption spectrometry and dynamic light scattering techniques. The high-temperature (80 and 100 °C) synthesis showed higher stability, demostrated lowest release of silver ion (0.02 µg/mL, 0.002 µg/mL) compared to low-temperature synthesis. In addition, high-temperature synthesis showed higher C-content (> 50%) with lower Ag-content (< 30%) than low-temperature (25 and 60 °C) synthesis. Moreover, a complete surface encapsulation is found on the particles synthesised at 100 °C by TEM analysis. The synthesized Ag-NPs were exposed to Caco-2 cell lines for cytotoxicity assessment. The high-temperature synthesis Ag-NPs exerted significantly lower cytotoxicity in terms of Caco-2 cell viability and lactate dehydrogenase (LDH) activity assay. Upon exposure to 1, 5 and 10 µg/mL Ag-NPs for 48 h the cell viability (96.33%, 90.66% and 89.66%) was not changed for high-temperature synthesis particles as well as the LDH activity was unchanged. However, low-temperature synthesis showed significant cytotoxicity (81%, 66% and 44.33%) under similar experimental conditions. Thus, characterization and cytotoxicity techniques clearly demonstrate the successful synthesis of Ag-NPs with the encapsulation of bio-molecules that enhances the particle stability and reduce cytotoxicity.

Keywords

Green synthesis Silver nanoparticles Encapsulation Stability Cytotoxicity 

Notes

Acknowledgements

We are humbly showing our gratitude to Ms. Miyako Komori, Prof. Kamiya and Dr. Parvin Begum for giving instrumental support during experiments. We are also showing our appreciation to the ‘Hokkaido University Innovation Research Organization Nanotechnology Integrated Research’ for giving us experimental support with their facilities.

Compliance with Ethical Standards

Conflict of interest

The authors declared that they have no conflict of interest to declare.

References

  1. 1.
    S.J. Yu, Y.G. Yin, J.F. Liu, Environ. Sci. Process. Impacts 15, 78–92 (2013)PubMedCrossRefGoogle Scholar
  2. 2.
    M. Akter, M.T. Sikder, M.M. Rahman, A.K.M.A. Ullah, K.F.B. Hossain, S. Banik, T. Hosokawa, T. Saito, M. Kurasaki, J. Adv. Res. 9, 1–16 (2018)PubMedCrossRefGoogle Scholar
  3. 3.
    K. Kneipp, H. Kneipp, J. Kneipp, Acc. Chem. Res. 39, 443–450 (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013–2016 (1988)CrossRefGoogle Scholar
  5. 5.
    X. Hangxun, W.Z. Brad, K.S. Suslick, Chem. Synth. Rev. 42, 2555–2567 (2013)Google Scholar
  6. 6.
    S.N. Aboutorabi, M. Nasiriboroumand, P. Mohammad, H. Sheibani, H. Barani, J. Inorg. Organomet. Polym. 28(6), 2525–2532 (2018)CrossRefGoogle Scholar
  7. 7.
    M.J. Piao, K.A. Kang, I.K. Lee, H.S. Kim, S. Kim, J.Y. Choi et al., Toxicol. Lett. 201, 92–100 (2011)PubMedCrossRefGoogle Scholar
  8. 8.
    H. Kang, J.T. Buchman, R.S. Rodriguez, H.L. Ring, J. He, K.C. Bantz, C.L. Haynes, Chem. Rev. 119, 664–699 (2019)PubMedCrossRefGoogle Scholar
  9. 9.
    T.C. Prathna, N. Chandrasekaran, A.M. Raichur, A. Mukherjee, Colloids Surf. A 377, 212–216 (2011)CrossRefGoogle Scholar
  10. 10.
    T. Yonezawa, D. Čempel, M.T. Nguyen, Bull. Chem. Soc. Jpn. 91, 1781–1798 (2018)CrossRefGoogle Scholar
  11. 11.
    P. Verma, Y. Kuwahara, K. Mori, H. Yamashita, Bull. Chem. Soc. Jpn. 92, 19–29 (2019)CrossRefGoogle Scholar
  12. 12.
    J. Zhou, J. An, B. Tang, S. Xu, Y. Cao, B. Zhao et al., Langmuir 24, 10407–10413 (2008)PubMedCrossRefGoogle Scholar
  13. 13.
    B.J. Wiley, Y. Xiong, Z.L. Yuan, Y. Yin, Y. Xia, Nano Lett. 6, 765–768 (2006)PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Sun, Y. Xia, Science 298, 2176–2179 (2002)PubMedCrossRefGoogle Scholar
  15. 15.
    M. Maillard, P. Huang, L. Brus, Nano Lett. 3, 1611–1615 (2003)CrossRefGoogle Scholar
  16. 16.
    Y. Gao, P. Jiang, L. Song, J. Wang, L. Liu, D. Liu et al., J Cryst. Growth 289, 376–380 (2006)CrossRefGoogle Scholar
  17. 17.
    J. An, B. Tang, X. Ning, J. Zhou, S. Xu, B. Zhao et al., J. Phys. Chem. 111, 18055–18059 (2007)Google Scholar
  18. 18.
    R. Jin, Y. Cao, C.A. Mirkin, G.C. Schatz, J. Zheng, Science 294, 1901–1903 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    A. Tao, P. Sinsermsuksakul, P. Yang, Chemie 45, 4597–4601 (2006)Google Scholar
  20. 20.
    B. Pietrobon, M. McEachran, V. Kitaev, ACS Nano 39, 21–26 (2008)Google Scholar
  21. 21.
    K. Caswell, C.M. Bender, C.J. Murphy, Nano Lett. 3, 667–669 (2003)CrossRefGoogle Scholar
  22. 22.
    C. Xue, G.S. Metraux, J.E. Millstone, C.A. Mirkin, J. Am. Chem. Soc. 130, 8337–8344 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    S.W. Lee, S.H. Chang, Y.S. Lai, C.C. Lin, C.M. Tsai, Y.C. Lee et al., Materials 7, 7781–7798 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    M. Akter, M.M. Rahman, A.K.M.A. Ullah, M.T. Sikder, T. Hosokawa, T. Saito, M. Kurasaki, J. Inorg. Organomet. Polym. 28, 1483–1493 (2018)CrossRefGoogle Scholar
  25. 25.
    M.M. Rahman, R.A. Uson-Lopez, M.T. Sikder, G. Tan, T. Hosokawa, T. Saito, M. Kurasaki, Chemosphere 196, 453–466 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    A.K.M.A. Ullah, M.F. Kabir, M. Akter, A.N. Tamanna, A. Hossain, A.R.M. Tareq, M.N.I. Khan, A.K.M.F. Kibria, M. Kurasaki, M.M. Rahman, RSC Adv. 8, 37176–37183 (2018)CrossRefGoogle Scholar
  27. 27.
    J.M. Ashraf, M.A. Ansari, H.M. Khan, A.M.A. Alzohairy, I. Choi, Sci. Rep. 6, 20414 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    D. Sarvamangala, K. Kondala, N. Sivakumar, M.S. Babu, S. Manga, Int. Res. J. Pharm. 4, 240–243 (2013)CrossRefGoogle Scholar
  29. 29.
    R. Parameshwaran, S. Kalaiselvam, R. Jayavel, Mater. Chem. Phys. 140, 135–147 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Behravan, A.H. Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, A. Mirzapour, Int. J. Biol. Macromol. 124, 148–154 (2019).  https://doi.org/10.1016/j.ijbiomac.2018.11.101 CrossRefPubMedGoogle Scholar
  31. 31.
    M.M.I. Haytham, J. Radiat. Res. Appl. Sci. 8, 265–275 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 46, 4630–4660 (2007)CrossRefGoogle Scholar
  33. 33.
    A.K.M.A. Ullah, A.K.M.F. Kibria, M. Akter, M.N.I. Khan, M.A. Maksud, R.A. Jahan, S.H. Firoz, J. Saudi Chem. Soc. 21, 830–836 (2017)CrossRefGoogle Scholar
  34. 34.
    A.K.M.A. Ullah, A.K.M.F. Kibria, M. Akter, M.N.I. Khan, A.R.M. Tareq, S.H. Firoz, Water Conserv. Sci. Eng. 1, 249–256 (2017)CrossRefGoogle Scholar
  35. 35.
    R.M. Gangan, K. Anand, A. Phulukdaree, A. Chuturgoon, Colloids Surf. B 105, 87–91 (2013)CrossRefGoogle Scholar
  36. 36.
    X.C. Jiang, W.M. Chen, C.Y. Chen, S.X. Xiong, A.B. Yu, Nanoscale Res. Lett. 6(1), 32 (2011)PubMedGoogle Scholar
  37. 37.
    K. Ali, B. Ahmed, S. Dwivedi, Q. Saquib, A.A. Al-Khedhairy, J. Musarrat, PLoS ONE (2015).  https://doi.org/10.1371/journal.pone.0131178 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    J. Mytych, J. Zebrowski, A. Lewinska, M. Wnuk, Mol. Neurobiol. 54, 1–16 (2016)Google Scholar
  39. 39.
    G. Kapildeva, M. Manickavasagama, N. Thajuddinb, K. Premkumarc, A. Ganapathi, Colloid Surf. B 106, 86–92 (2013)CrossRefGoogle Scholar
  40. 40.
    P. Velmurugan, S. Hong, A. Aravinthan, S.H. Jang, P.I. Yi, Y.C. Song, E.S. Jung, J.S. Park, S. Sivakumar, Arab. J. Sci. Eng. (2016).  https://doi.org/10.1007/s13369-016-2254-8 CrossRefGoogle Scholar
  41. 41.
    K. Kalishwaralal, E. Banumathi, S.R.K. Pandian, V. Deepak, J. Muniyandi, S.H. Eom et al., Colloid Surf. B 73, 51–57 (2009)CrossRefGoogle Scholar
  42. 42.
    J.Y. Wang, M.F. Rahman, H.M. Duhart, G.D. Newport, T.A. Patterson, R.C. Murdock et al., Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicology 30, 926–933 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    M.V.D.Z. Park, A.M. Neigh, J.P. Vermeulen, L.J.J. de la Fonteyne, H.W. Verharen, J.J. Briedé et al., Biomaterials 32, 9810–9817 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    C. Carlson, S.M. Hussain, A.M. Schrand, L.K. Braydich-Stolle, K.L. Hess, R.L. Jones et al., J. Phys. Chem. B 112, 13608–13619 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    A.K.M.A. Ullah, A.N. Tamanna, A. Hossain, M. Akter, M.F. Kabir, A.R.M. Tareq, A.K.M. Fazle Kibria, M. Kurasaki, M.M. Rahman, M.N.I. Khanh, RSC Adv. 9, 13254–13262 (2019)CrossRefGoogle Scholar
  46. 46.
    X. Yang, A.P. Gondikas, S.M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J.N. Meyer, Environ. Sci. Technol. 46, 1119–1127 (2012)PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mahmuda Akter
    • 1
    Email author
  • A. K. M. Atique Ullah
    • 2
  • Md. Shiblur Rahaman
    • 1
  • Md. Mostafizur Rahman
    • 3
  • Md. Tajuddin Sikder
    • 4
  • Toshiyuki Hosokawa
    • 5
  • Takeshi Saito
    • 6
  • Masaaki Kurasaki
    • 1
    • 7
  1. 1.Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
  2. 2.Nanoscience and Technology Research LaboratoryAtomic Energy Centre, Bangladesh Atomic Energy CommissionDhakaBangladesh
  3. 3.Department of Environmental SciencesJahangirnagar UniversityDhakaBangladesh
  4. 4.Department of Public Health and InformaticsJahangirnagar UniversityDhakaBangladesh
  5. 5.Research Division of Higher Education, Institute for the Advancement of Higher EducationHokkaido UniversitySapporoJapan
  6. 6.Faculty of Health SciencesHokkaido UniversitySapporoJapan
  7. 7.Faculty of Environmental Earth Science, Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan

Personalised recommendations