Efficacy of Novel NaX/MgO–TiO2 Zeolite Nanocomposite for the Adsorption of Methyl Orange (MO) Dye: Isotherm, Kinetic and Thermodynamic Studies

  • Daryoush Mirzaei
  • Abedin ZabardastiEmail author
  • Yaghoub Mansourpanah
  • Meysam Sadeghi
  • Saeed Farhadi


The current study focuses on using the NaX/MgO–TiO2 zeolite nanocomposite for the adsorption of methyl orange (MO) organic dye from aqueous solution. For this purpose, MgO–TiO2 nanoparticles were firstly supported on the NaX zeolite using the ultrasound-assisted dispersion method at 450 °C. The obtained nanocomposite was well characterized by Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray dot-mapping, Transmission electron microscopy (TEM), Atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). The UV–Vis results proved that MO was adsorbed on the nanocomposite after 35 min at 45 °C with a yield more than 95%. The different factors such as pH, adsorbent dose, contact time, adsorbent type, and initial concentration was applied to investigate the adsorption efficiency of NaX/MgO–TiO2 nanocomposite for the adsorption of MO dye. Also, Langmuir, Freundlich, and Temkin isotherm models were examined. The experimental adsorption isotherm was successfully verified by the Langmuir model with a maximum adsorption capacity 53.76 mg g−1 of MO on the NaX/MgO–TiO2 nanocomposite. The reaction kinetic was evaluated by employing the pseudo-first and second-orders models. The adsorption kinetic fit pseudo-second-order model. In addition, the investigation of the thermodynamic parameters including \(\Delta G^{O}\),\(\Delta H^{O}\), and \(\Delta S^{O}\) indicated that adsorption reaction of MO was spontaneous, revealing physicochemical adsorption properties and endothermic process.

Graphic Abstract


NaX/MgO–TiO2 Nanocomposite Ultrasound-assisted dispersion Adsorption Methyl orange dye 



The authors give their sincere thanks to the Cental lab of Lorestan University, khorramabad Iran for all supports.


  1. 1.
    S. Sarmah, A. Kumar, photocatalytic activity polyaniline-TiO2 nanocomposite. Indian J. Phys. 85, 713–726 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Mittal, A. Malviya, D. Kaur, J. Mittal, L. Kurup, Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials. J. Hazard. Mater. 148, 229–240 (2007)PubMedCrossRefGoogle Scholar
  3. 3.
    A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault, H. Kochkar, Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms and formal mechanisms. Appl. Catal. B 163, 404–414 (2015)CrossRefGoogle Scholar
  4. 4.
    R. Saraf, C. Shivakumara, S. Behera, H. Nagabhushana, N. Dhananjaya, Facile synthesis of PbWO4: applications in photoluminescence and photocatalytic degradation of organic dyes under visible light. Spectrochim. Acta AW 136, 348–355 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Mansourpanah, M. Samimi, Preparation and characterization of a low-pressure efficient polyamide multi-layer membrane for water treatment and dye removal. J. Ind. Eng. Chem. 53, 93–104 (2017)CrossRefGoogle Scholar
  6. 6.
    N. MuhdJulkapli, S. Bagheri, S. Bee, A. Hamid, Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. 2014, 1–25 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Khataee, R.D.C. Soltani, A. Karimi, S.W. Joo, Sonocatalytic degradation of a textile dye over Gd doped ZnO nanoparticles synthesized through sonochemical process. Ultrason. Sonochem. 23, 219–230 (2015)PubMedCrossRefGoogle Scholar
  8. 8.
    K. Pourzareh, S. Farhadi, Y. Mansourpanah, Anchoring H3PW12O40 on aminopropylsilanized spinel-type cobalt oxide (Co3O4-SiPrNH2/H3PW12O40): a novel nanohybrid adsorbent for removing cationic organic dye pollutants from aqueous solutions. Appl. Organomet. Chem. 32, 1–15 (2018)Google Scholar
  9. 9.
    M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueoussolution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014)PubMedCrossRefGoogle Scholar
  10. 10.
    S. Rengaraj, A. Banumathi, V. Murugesan, Preparation and characterization of activated carbon from agricultural wastes. Indian J. Chem. Technol. 6, 1–4 (1999)Google Scholar
  11. 11.
    A. Metes, D. Kovacevic, D. Vujevic, S. Papic, The role of zeolites in wastewater treatment of printing inks. Water Res. 38, 3373–3381 (2004)PubMedCrossRefGoogle Scholar
  12. 12.
    K.K.H. Choy, G. McKay, J.F. Porter, Sorption of acid dyes from effluents using activated carbon. Resour. Conserv. Recycl. 27, 57–71 (1999)CrossRefGoogle Scholar
  13. 13.
    Y.-H. Huang, C.-L. Hsueh, C.-P. Huang, L.-C. Su, C.-Y. Chen, Adsorption thermodynamic and kinetic studies of Pb(II) removal from water onto a versatile Al2O3-supported iron oxide. Sep. Purif. Technol. 55, 23–29 (2007)CrossRefGoogle Scholar
  14. 14.
    J. Lee, S. Mahendra, P.J.J. Alvarez, Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4, 3580–3590 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Preparation and characterization of quantum size titanium dioxide (TiO2). J. Phys. Chem. 92, 5196–5201 (1988)CrossRefGoogle Scholar
  16. 16.
    J. Domaradzki, A. Borkowska, D. Kaczmarek, E.L. Prociow, Properties of transparent oxide thin films prepared by plasma deposition. Opt. Appl. 35, 425–430 (2005)Google Scholar
  17. 17.
    J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)PubMedCrossRefGoogle Scholar
  18. 18.
    T. Somanathan, V.M. Krishna, V. Saravanan, R. Kumar, R. Kumar, MgO nanoparticles for effective uptake and release of doxorubicin drug: pH sensitive controlled drug release. J. Nanosci. Nanotechnol. 16, 9421–9431 (2016)CrossRefGoogle Scholar
  19. 19.
    C. Mahendirana, K. Scottb, A. Gedankena, Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation. Mater. Chem. Phys. 128, 341–347 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Bülow, W. Hilgert, G. Emig, Transport phenomena and reactions in 13X type zeolites, in Catalysis and Adsorption by Zeolites, Studies in Surface Science and Catalysis, vol. 65, ed. by G. Öhlmann, H. Pfeifer, R. Fricke (Elsevier, Amsterdam, 1991), pp. 479–490Google Scholar
  21. 21.
    D. Akolekar, A. Chaffee, R.F. Howe, The transformation of kaolin to low-silica X zeolite. Zeolites 19, 359–365 (1997)CrossRefGoogle Scholar
  22. 22.
    M. Murat, A. Amokrane, J.P. Bastide, L. Montanaro, Synthesis of zeolites from thermally activated kaolinite. Some observations on nucleation and growth. Clay Miner. 27, 119–130 (1992)CrossRefGoogle Scholar
  23. 23.
    M. Sadeghi, S. Yektab, H. Ghaedi, Synthesis and application of Pb-MCM-41/ZnNiO2 as a novel mesoporous nanocomposite adsorbent for the decontamination of chloroethyl phenyl sulfide (CEPS). Appl. Surf. Sci. 400, 471–480 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Jahangirian et al., synthesis and characterization of zeolite/Fe3O4 nanocomposite by green quick precipitation method. Dig. J. Nanomater. Bios. 8, 1405–1413 (2013)Google Scholar
  25. 25.
    T. Yamamoto, E. Apiluck, S. Kim, T. Ohmori, Preparation and Characterization of Cobalt Cation-Exchanged NaX Zeolite as Catalyst for Wastewater Treatment. J. Ind. Eng. Chem. 13, 1142–1148 (2007)Google Scholar
  26. 26.
    D. Shakti, B. Sanghamitra, Studies on removal of safranine-T and methyel orange dyes from aqueous solution using NaX zeolite synthesized from fly ash. Int. J. Sci. Environ. Technol. 2, 735–747 (2013)Google Scholar
  27. 27.
    F.F. Brites, V.S. Santana, N.R.C. Fernandes-Machado, Effect of support on the photocatalytic degradation of textile effluents using Nb2O5 and ZnO: photocatalytic degradation of textile dye. Top. Catal. 54, 264–269 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Wang, Y. Yu, W. Zhang, Photocatalytic methyl orange degradation on TiO2-NaX composite. Adv. Mater. Res. 129, 804–809 (2011)Google Scholar
  29. 29.
    L. Torkian, E. Amereh, Nano sized Ni/TiO2@NaX zeolite with enhanced photocatalytic activity. J Nanostruct. 6, 307–311 (2016)Google Scholar
  30. 30.
    M. Rasouli, N. Yaghobi, S. Chitsazan, M.H. Sayyar, Microporous Mesoporous Mater. 90, 1407–1415 (2012)Google Scholar
  31. 31.
    Z. Qin, J. Joo, L. Gu, M.J. Sailor, Size control of porous silicon nanoparticles by electrochemical perforation etching Part. Part. Syst. Charact. 31, 252–258 (2014)CrossRefGoogle Scholar
  32. 32.
    I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinium. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  33. 33.
    E. Voudrias, F. Fytianos, E. Bozani, Sorption Description isotherms of Dyes from aqueous solutions and Waste Waters with Different Sorbent materials. Global Nest. Int. J. 4, 75–83 (2002)Google Scholar
  34. 34.
    M.I. Tempkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR 12, 327–356 (1940)Google Scholar
  35. 35.
    S. Lagergern, K. Sven, About the theory of so-called adsorption of soluble substances. Vetenskapsakad Handl. 24, 1–39 (1898)Google Scholar
  36. 36.
    Y.S. Ho, G. Mckay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 76, 822–827 (1998)CrossRefGoogle Scholar
  37. 37.
    R. Niwas, U. Gupta, A.A. Khan, K.G. Varshney, The adsorption of phosphamidon on the surface of styrene supported zirconium (IV) tungstophosphate: a thermodynamic study. Colloid. Surf. A 164, 115–119 (2000)CrossRefGoogle Scholar
  38. 38.
    M. Küc, A. Kükosmanoglu, O. Gezici, A. Ayar, The adsorption behaviors of methylene blue and methyl orange in a diaminoethane sporopollenin-mediated column system. Sep. Purif. Technol. 52, 280–287 (2006)CrossRefGoogle Scholar
  39. 39.
    H.Y. Zhu, R. Jiang, L. Xiao, Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl. Clay Sci. 48, 522–526 (2010)CrossRefGoogle Scholar
  40. 40.
    G. Annadurai, R.-S. Juang, D.-J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92, 263–274 (2002)PubMedCrossRefGoogle Scholar
  41. 41.
    E. Alver, A.U. Metin, Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem. Eng. J. 200, 59–67 (2012)CrossRefGoogle Scholar
  42. 42.
    Z. Liu, A. Zhou, G. Wang, X. Zhao, Adsorption behavior of methyl orange onto modified ultrafine coal powder. Chin. J. Chem. Eng. 17, 942–948 (2009)CrossRefGoogle Scholar
  43. 43.
    T.K. Saha, N.C. Bhoumik, S. Karmaker, M.G. Ahmed, H. Ichikawa, Y. Fukumori, Adsorption of methyl orange onto chitosan from aqueous solution. J. Water Resour. Prot. 2, 898–906 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Daryoush Mirzaei
    • 1
  • Abedin Zabardasti
    • 1
    Email author
  • Yaghoub Mansourpanah
    • 1
  • Meysam Sadeghi
    • 1
  • Saeed Farhadi
    • 1
  1. 1.Department of ChemistryLorestan UniversityKhorramabadIran

Personalised recommendations