4-Nitro-Azo Dye-Sensitized Optical Behavior of Organic/Inorganic Hybrid Networks in Zirconium-Based Thin Films: Effect of Cu Co-doping

  • S. Salari
  • F. E. GhodsiEmail author
  • M. Pasandideh Nadamani


The considerable attention on organic–inorganic compounds motivated us to study the effect of incorporation of new azo derivative, (2-hydroxy-3-methoxy-5-((4-Nitrophenyl)diazenyl) benzaldehyde), as an applicable organic molecule, in the structure of zirconium-based sol–gel thin films. The driving force behind our study is to see whether the possible coordination of organic and inorganic counterparts leads to the modification of the physical characters of the samples. The study on the UV/Vis transmittance and FTIR spectra of samples confirms that a combination of functional groups with the inorganic bonds is created. The improvement in the photoluminescence intensity is observed due to the lower concentration of dimer in the 1% azo-doped thin film. The effect of the addition of copper on the optical characteristics of samples doped with 1% azo is also studied. The increase in the copper concentration showed to be an intelligent method to achieve higher PL intensity.


Zirconium Azo dye Organic–inorganic hybrid Copper Photoluminescence 



The authors would like to acknowledge the University of Guilan Research Council for the support of this work.

Supplementary material

10904_2019_1345_MOESM1_ESM.docx (577 kb)
Electronic supplementary material 1 (DOCX 577 kb)


  1. 1.
    M.S. Ho, C. Barrett, J. Paterson, M. Esteghamatian, A. Natansohn, P. Rochon, Macromolecules 29, 4613 (1996)CrossRefGoogle Scholar
  2. 2.
    S. Wang, S. Shen, H. Xu, Dyes Pigm. 44, 195 (2000)CrossRefGoogle Scholar
  3. 3.
    S.Y. Grebenkin, V.M. Syutkin, D.S. Baranov, J. Photochem. Photobiol. A 344, 1 (2017)CrossRefGoogle Scholar
  4. 4.
    N.A. El-Ghamaz, M.A. Diab, A.Z. El-Sonbati, O.L. Salem, Spectrochim. Acta A 83, 61 (2011)CrossRefGoogle Scholar
  5. 5.
    G. Wang, F. Gan, Mater. Lett. 43, 6 (2000)CrossRefGoogle Scholar
  6. 6.
    Z. Akhter, M.S. Ullah Khan, M.A. Bashir, J. Inorg. Organomet. Polym Mater. 14, 253 (2004)CrossRefGoogle Scholar
  7. 7.
    C. Lin, C. Zhang, J. Lin, J. Phys. Chem. C 111, 3300 (2007)CrossRefGoogle Scholar
  8. 8.
    H.-R. Chen, J.-L. Shi, Y. Yang, Y.-S. Li, D.-S. Yan, C.-S. Shi, Appl. Phys. Lett. 81, 2762 (2002)Google Scholar
  9. 9.
    S. Ashraf, M. Irfan, D. Kim, J.-H. Jang, W.-T. Han, Y.-D. Jho, Ceram. Int. 40, 8513 (2014)CrossRefGoogle Scholar
  10. 10.
    D.-Y. Cho, H.-S. Jung, J.H. Kim, C.S. Hwang, Appl. Phys. Lett. 97, 141905 (2010)CrossRefGoogle Scholar
  11. 11.
    O. Taqatqa, H. Al Attar, Eur. Phys. J. Appl. Phys. 37, 61 (2007)CrossRefGoogle Scholar
  12. 12.
    X. Liu, Y. Li, X. Wang, Mater. Lett. 60, 1943 (2006)CrossRefGoogle Scholar
  13. 13.
    X. Liu, D. Cui, Q. Wang, H. Xu, M. Li, J. Mater. Sci. 40, 1111 (2005)CrossRefGoogle Scholar
  14. 14.
    L. Gong, J. Zhao, H. Hu, J. Lin, X. Yu, X. Wang, Ceram. Int. 43, 13159 (2017)CrossRefGoogle Scholar
  15. 15.
    M.D. McCluskey, S.J. Jokela, J. Appl. Phys. 106, 071101 (2009)CrossRefGoogle Scholar
  16. 16.
    A.A. Ziabari, F.E. Ghodsi, J. Alloys Compd. 509, 8748 (2011)CrossRefGoogle Scholar
  17. 17.
    A.A. Ziabari, F.E. Ghodsi, J. Lumin. 141, 121 (2013)CrossRefGoogle Scholar
  18. 18.
    F.E. Ghodsi, F.Z. Tepehan, Sol. Energy Mater. Sol. Cells 59, 367 (1999)CrossRefGoogle Scholar
  19. 19.
    G. Villa-Sánchez, D. Mendoza-Anaya, G. Mondragón-Galicia, R. Pérez-Hernández, O. Olea-Mejía, P.R. González-Martínez, Radiat. Phys. Chem. 97, 118 (2014)CrossRefGoogle Scholar
  20. 20.
    N.O. Mahmoodi, S. Rahimi, M. Pasandideh Nadamani, Dyes Pigm. 143, 387 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Cryst. Res. Technol. 45, 1154 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Bera, M. Pal, S. Sarkar, S. Jana, Appl. Surf. Sci. 273, 39 (2013)CrossRefGoogle Scholar
  23. 23.
    B. Babiarczuk, A. Szczurek, A. Donesz-Sikorska, I. Rutkowska, J. Krzak, Surf. Coat. Technol. 285, 134 (2016)CrossRefGoogle Scholar
  24. 24.
    Z. Chen, H. Wang, X. Wang, P. Chen, Y. Liu, H. Zhao, Y. Zhao, Y. Duan, Sci. Rep. 7, 40061 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    S. Chen, Y. Yin, D. Wang, Y. Liu, X. Wang, J. Cryst. Growth 282, 498 (2005)CrossRefGoogle Scholar
  26. 26.
    I. Das, S. Chattopadhyay, A. Mahato, B. Kundu, G. De, RSC Adv. 6, 59030 (2016)CrossRefGoogle Scholar
  27. 27.
    I. Molodetsky, A. Navrotsky, M.J. Paskowitz, V.J. Leppert, S.H. Risbud, J. Non-Cryst. Solids 262, 106 (2000)CrossRefGoogle Scholar
  28. 28.
    V.S. Anitha, S.S. Lekshmy, K. Joy, J. Mater. Sci.: Mater. Electron. 24, 4340 (2013)Google Scholar
  29. 29.
    K. Park, S.J. Yoon, J.W. Pi, Dyes Pigm. 143, 317 (2017)CrossRefGoogle Scholar
  30. 30.
    A.K. Bhosale, P.S. Shinde, N.L. Tarwal, R.C. Pawar, P.M. Kadam, P.S. Patil, Electrochim. Acta 55, 1900 (2010)CrossRefGoogle Scholar
  31. 31.
    D. Hu, J. Lin, S. Jin, Y. Hu, W. Wang, R. Wang, B. Yang, Mater. Chem. Phys. 170, 7495 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, Q. Gan, S. Wang, G. Yang, J. Inorg. Organomet. Polym. Mater. 22, 48 (2012)CrossRefGoogle Scholar
  33. 33.
    X.L. Zhu, L. Shi, J. Chan, J. Wang, C. Ye, D. Lo, Opt. Commun. 251, 322 (2005)CrossRefGoogle Scholar
  34. 34.
    N.A. El-Ghamaz, A.Z. El-Sonbati, S.M. Morgan, J. Mol. Struct. 1027, 92 (2012)CrossRefGoogle Scholar
  35. 35.
    S.J.L. Ribeiro, M.V. dos Santos, P.R. Silva, É. Pecoraro, P.R. Gonçalves, J.M.A. Caiut, in The Sol-Gel Handbook, ed. by D. Levy, M. Zayat (Wiley, Weinheim, 2015), pp. 929–962CrossRefGoogle Scholar
  36. 36.
    K. Smits, D. Millers, L. Grigorjeva, J.D. Fidelus, W. Lojkowski, J. Phys (2007). CrossRefGoogle Scholar
  37. 37.
    L. Kumari, W.Z. Li, J.M. Xu, R.M. Leblanc, D.Z. Wang, Y. Li, H. Guo, J. Zhang, Cryst. Growth Des. 9, 3874 (2009)CrossRefGoogle Scholar
  38. 38.
    R. Vogel, P. Meredith, I. Kartini, M. Harvey, J.D. Riches, A. Bishop, N. Heckenberg, M. Trau, H. Rubinsztein-Dunlop, ChemPhysChem 4, 595 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    S.S. Kurbanov, Z.S. Shaymardanov, M.A. Kasymdzhanov, P.K. Khabibullaev, T.W. Kang, Opt. Mater. 29, 1177 (2007)CrossRefGoogle Scholar
  40. 40.
    E.G. Birgin, I. Chambouleyron, J.M. Martı́nez, J. Comput. Phys. 151, 862 (1999)CrossRefGoogle Scholar
  41. 41.
    A. Monemdjou, F.E. Ghodsi, J. Mazloom, Superlattices Microstruct. 74, 19 (2014)CrossRefGoogle Scholar
  42. 42.
    R. Swanepoel, J. Phys. E 16, 1214 (1983)CrossRefGoogle Scholar
  43. 43.
    N. Korsunska, M. Baran, Y. Polishchuk, O. Kolomys, T. Stara, M. Kharchenko, O. Gorban, V. Strelchuk, Y. Venger, V. Kladko, ECS J. Solid State Sci. Technol. 4, N103 (2015)CrossRefGoogle Scholar
  44. 44.
    W.L. Ong, H. Huang, J. Xiao, K. Zeng, G.W. Ho, Nanoscale 6, 1680 (2014)PubMedCrossRefGoogle Scholar
  45. 45.
    A. Sreedhar, J.H. Kwon, J. Yi, J.S. Kim, J.S. Gwag, Mater. Sci. Semicond. Process. 49, 8 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsFaculty of Science, University of GuilanRashtIran
  2. 2.Department of ChemistryFaculty of Science, University of GuilanRashtIran

Personalised recommendations