Advertisement

Polyamidoamine-Drug Conjugates Containing Metal-Based Anticancer Compounds

  • B. A. AderibigbeEmail author
  • A. Mugogodi
  • M. Nwamadi
  • S. S. Ray
  • V. Steenkamp
  • M. O. Balogun
  • W. M. R. Matshe
Article
  • 48 Downloads

Abstract

Polyamidoamine drug conjugates containing ferrocene and platinum analogues were prepared in this study. Fourier transform infrared spectra confirmed the successful isolation of the conjugates with signals at 3300 cm−1 for amide N–H stretch and for C=O stretch at 1655–1635 cm−1 resulting from the conjugation of 4-ferrocenylketobutanoic acid. The polyamidoamine drug conjugate particle size was 247.1 nm and 258.3 nm suggesting their ability to exhibit in vitro phagocytosis. The average particle charges were 29 and 30.2, which was indicative of good stability and the capability to resist aggregation. In vitro cytotoxicity studies further revealed that the conjugates 1–5 did not exhibit cytotoxicity towards the normal cell lines (EA.hy926) whereas high cytotoxic activity was noted against the cancer cell lines (MCF-7 and MDA-MB-231) indicating selectivity towards cancer cell lines. Fc-PDA acted as a potentiating agent when incorporated together with DACH PtCl2 in the polymers, resulting in a good inhibitory effect in vitro. However, when combining Fc-PDA with K2PtCl4 in the polymer, an antagonistic effect was noted. The current findings implicate that the prepared conjugates hold the potential as therapeutics for the treatment of breast cancer. Further research is required to confirm this.

Keywords

Anticancer Cytotoxicity Drug delivery Ferrocene Platinum Polyamidoamine Polymer-conjugate 

Notes

Acknowledgements

Financial support received from the Medical Research Council (Self-Initiated Research) and National Research Foundation, South Africa to carry out this research is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10904_2019_1325_MOESM1_ESM.tif (1.4 mb)
Supplementary material 1 (TIFF 1459 kb)
10904_2019_1325_MOESM2_ESM.tif (1.4 mb)
Supplementary material 2 (TIFF 1459 kb)
10904_2019_1325_MOESM3_ESM.tif (1.1 mb)
Supplementary material 3 (TIFF 1085 kb)

References

  1. 1.
    World Health Organisation (2017) Cancer, Media Centre. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 14 May 2017
  2. 2.
    H. Gheybi, H. Niknejad, A.A. Entezami, Polymer–metal complex nanoparticles-containing cisplatin and amphiphilic block copolymer for anticancer drug delivery. Des. Monomers Polym. 17, 334–344 (2014)CrossRefGoogle Scholar
  3. 3.
    R.P. Miller, R.K. Tadagavadi, G. Ramesh, W.B. Reeves, Mechanisms of cisplatin nephrotoxicity. Toxins 2, 2490–2518 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    M.A. Mashhadi, M.R. Arab, F. Azizi, M.R. Shahraki, Histological study of toxic effects of cisplatin single dose injection on rat kidney. Gene Cell Tissue. 1, e21536 (2014)CrossRefGoogle Scholar
  5. 5.
    S.A. Aldossary, Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomed. Pharmacol. J. 12, 7–15 (2019)CrossRefGoogle Scholar
  6. 6.
    R. Oun, Y.E. Moussa, N.J. Wheate, The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 47, 6645–6653 (2018)CrossRefPubMedGoogle Scholar
  7. 7.
    G.B. Kauffman, The discovery of ferrocene, the first sandwich compound. J. Chem. Educ. 60, 185–186 (1983)CrossRefGoogle Scholar
  8. 8.
    M. Beauperin, D. Polat, F. Roudesly, S. Top, A. Vessières, J. Oble, G. Jaouen, G. Poli, Approach to ferrocenyl-podophyllotoxin analogs and their evaluation as anti-tumor agents. J. Organomet. Chem. 839, 83–90 (2017)CrossRefGoogle Scholar
  9. 9.
    C. Ornelas, Application of ferrocene and its derivatives in cancer research. New J. Chem. 35, 1973 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Jaouen, A. Vessières, S. Top, Ferrocifen type anticancer drugs. Chem. Soc. Rev. 44, 8802–8817 (2015)CrossRefPubMedGoogle Scholar
  11. 11.
    R. Cavalli, A. Bisazza, R. Sessa, L. Primo, F. Fenili, A. Manfredi, E. Ranucci, P. Ferruti, Amphoteric agmatine containing polyamidoamines as carriers for plasmid DNA in vitro and in vivo delivery. Biomacromolecules 11, 2667–2674 (2010)CrossRefPubMedGoogle Scholar
  12. 12.
    P. Ferruti, M.A. Marchisio, R. Duncan, Poly(amido-amine)s: biomedical applications. Macromol. Rapid Commun. 23, 332–355 (2002)CrossRefGoogle Scholar
  13. 13.
    P. Wu, H. Chen, R. Jin, T. Weng, J.K. Ho, C. You, L. Zhang, X. Wang, C. Han, Non-viral gene delivery systems for tissue repair and regeneration. J. Transl. Med. 16, 1–20 (2018)Google Scholar
  14. 14.
    P. Ferruti, Poly (amidoamine) s: past, present, and perspectives. J. Polym. Sci. A. 51, 2319–2353 (2013)CrossRefGoogle Scholar
  15. 15.
    F. Martello, M. Piest, J.F. Engbersen, P. Ferruti, Effects of branched or linear architecture of bioreducible poly (amido amine) s on their in vitro gene delivery properties. J. Control. Release 164, 372–379 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    H.E. Mukaya, R.L. Van Zyl, N.C. Jansen van Vuuren, C.T. Chen, X.Y. Mbianda, Synthesis, characterization, biological evaluation, and drug release study of polyamidoamine-containing neridronate. Int. J. Polym. Mater. Polym. Biomater. 68, 489–498 (2018)CrossRefGoogle Scholar
  17. 17.
    B.A. Aderibigbe, E.R. Sadiku, S.S. Ray, X.Y. Mbianda, M.C. Fotsing, S.C. Agwuncha, S.J. Owonubi, Synthesis and characterization of polyamidoamine conjugates of neridronic acid. Polym. Bull. 72, 417–439 (2015)CrossRefGoogle Scholar
  18. 18.
    Q. Yang, R. Qi, J. Cai, X. Kang, S. Sun, H. Xiao, X. Jing, W. Li, Z. Wang, Biodegradable polymer– platinum drug conjugates to overcome platinum drug resistance. RSC Adv. 5, 83343–83349 (2015)CrossRefGoogle Scholar
  19. 19.
    V. Novohradsky, I. Zanellato, C. Marzano, J. Pracharova, J. Kasparkova, D. Gibson, V. Gandin, D. Osella, V. Brabec, Epigenetic and antitumor effects of platinum (IV)-octanoato conjugates. Sci. Rep. 7, 1–14 (2017)CrossRefGoogle Scholar
  20. 20.
    W. Shen, J. Luan, L. Cao, J. Sun, L. Yu, J. Ding, Thermogelling polymer–platinum (IV) conjugates for long-term delivery of cisplatin. Biomacromol 16, 105–115 (2014)CrossRefGoogle Scholar
  21. 21.
    C. Zhu, J. Xiao, M. Tang, H. Feng, W. Chen, M. Du, Platinum covalent shell cross-linked micelles designed to deliver doxorubicin for synergistic combination cancer therapy. Int. J. Nanomed. 12, 3697–3710 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Aryal, C.M. Hu, V. Fu, L. Zhang, Nanoparticle drug delivery enhances the cytotoxicity of hydrophobic–hydrophilic drug conjugates. J. Mater. Chem. 22, 994–999 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Xiao, L. Yan, Y. Zhang, R. Qi, W. Li, R. Wang, S. Liu, Y. Huang, Y. Li, X. Jing, A dual-targeting hybrid platinum (IV) prodrug for enhancing efficacy. Chem. Commun. 48, 10730–10732 (2012)CrossRefGoogle Scholar
  24. 24.
    W. Scarano, P. De Souza, M.H. Stenzel, Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer. Biomater. Sci. 3, 163–174 (2015)CrossRefPubMedGoogle Scholar
  25. 25.
    K.J. Diainabo, E.W. Neuse, C.T. Chen, R. Lynne Van Zyl, Design and synthesis of polysapartamide co-drugs of platinum and methotrexate as anticancer agents. Int. J. Polym. Mater. Polym. Biomater. 68, 456–462 (2019)CrossRefGoogle Scholar
  26. 26.
    D. Valigura, V. Vančová, G. Ondrejovič, J. Kováčová, F. Kiss, Preparation and properties of (1, 2-Diaminocyclohexane) dichloroplatinum (II) complexes containing cis or trans 1, 2-diaminocyclohexane. Collect. Czechoslov. Chem. Commun. 57, 457–462 (1992)CrossRefGoogle Scholar
  27. 27.
    H.E. Mukaya, E.W. Neuse, R.L. van Zyl, C.T. Chen, Synthesis and preliminary bio-evaluation of polyaspartamide Co-conjugates of p-amino-salicylic acid chelated platinum (II) and ferrocene complexes. J. Inorg. Organomet. Polym Mater. 25, 367–375 (2015)CrossRefGoogle Scholar
  28. 28.
    W. Zhou, L. Wang, H. Yu, X. Yang, Q. Chen, J. Wang, Synthesis of a novel ferrocene-based epoxy compound and its burning rate catalytic property. RSC Adv. 6, 53679–53687 (2016)CrossRefGoogle Scholar
  29. 29.
    A.I. Mufula, E.W. Neuse, Macromolecular carriers for methotrexate and ferrocene in cancer chemotherapy. J. Inorg. Organomet. Polym Mater. 21, 511–526 (2011)CrossRefGoogle Scholar
  30. 30.
    C.F. Albrecht, M.A. Stander, M.C. Grobbelaar, J. Colling, J. Kossmann, P.N. Hills, N.P. Makunga, LC-MS-based metabolomics assists with quality assessment and traceability of wild and cultivated plants of Sutherlandia frutescens (Fabaceae). S. Afr. J. Bot. 1, 33–45 (2012)CrossRefGoogle Scholar
  31. 31.
    V. Vichai, K. Kirtikara, Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1, 1112–1116 (2006)CrossRefPubMedGoogle Scholar
  32. 32.
    Hydrotrope Promoted Aza-Michael Addition Reaction. Chapter 6, pages 206–228. https://shodhganga.inflibnet.ac.in/bitstream/10603/25448/12/12_chapter_06.pdf. Accessed 22 Aug 2019
  33. 33.
    L.L. Komane, E.H. Mukaya, E.W. Neuse, C.E. Van Rensburg, Macromolecular antiproliferative agents featuring dicarboxylato-chelated platinum. J. Inorg. Organomet. Polym Mater. 18, 111–123 (2008)CrossRefGoogle Scholar
  34. 34.
    S.S. Braga, A.M. Silva, A new age for iron: antitumoral ferrocenes. Organometallics 32, 5626–5639 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Vessières, Metal carbonyl tracers and the ferrocifen family: two facets of bioorganometallic chemistry. J. Organomet. Chem. 734, 3–16 (2013)CrossRefGoogle Scholar
  36. 36.
    V.N. Babin, Y.A. Belousov, V.I. Borisov, V.V. Gumenyuk, Y.S. Nekrasov, L.A. Ostrovskaya, I.K. Sviridova, N.S. Sergeeva, A.A. Simenel, L.V. Snegur, Ferrocenes as potential anticancer drugs. Facts and hypotheses. Russ. Chem. Bull. 63, 2405–2422 (2014)CrossRefGoogle Scholar
  37. 37.
    E.H. Mukaya, R. Van Zyl, N.J. Van Vuuren, X.Y. Mbianda, Polymeric prodrugs containing neridronate and ferrocene: synthesis, characterization, and antimalarial activity. Int. J. Polym. Mater. Polym. Biomater. 67, 401–409 (2018)CrossRefGoogle Scholar
  38. 38.
    A.S. Ndamase, B.A. Aderibigbe, E.R. Sadiku, P. Labuschagne, Y. Lemmer, S.S. Ray, M. Nwamadi, Synthesis, characterization and in vitro cytotoxicity evaluation of polyamidoamine conjugate containing pamidronate and platinum drug. J. Drug Deliv. Sci. Technol. 43, 267–273 (2018)CrossRefGoogle Scholar
  39. 39.
    B.A. Aderibigbe, S.S. Ray, Preparation, characterization and in vitro release kinetics of polyaspartamide-based conjugates containing antimalarial and anticancer agents for combination therapy. J. Drug Deliv. Sci. Technol. 36, 34–45 (2016)CrossRefGoogle Scholar
  40. 40.
    A.K. Biswas, M.R. Islam, Z.S. Choudhury, A. Mostafa, M.F. Kadir, Nanotechnology based approaches in cancer therapeutics. Adv. Nat. Sci. 5, 043001 (2014)Google Scholar
  41. 41.
    A. Rodzinski, R. Guduru, E. Stimphil, T. Stewart, P. Liang, C. Runowicz, S. Khizroev. Targeted, controlled anticancer drug delivery and release with magnetoelectric nanoparticles, Proceedings of the 107th Annual Meeting of the American Association for Cancer Research Apr 16–20, New Orleans, LA. Philadelphia (PA): AACR Cancer Res 76 (14 Suppl), Abstract no 2204 (2016)Google Scholar
  42. 42.
    F.M. Veronese, G. Pasut, PEGylation, successful approach to drug delivery. Drug Discov. Today 10, 1451–1458 (2005)CrossRefPubMedGoogle Scholar
  43. 43.
    V.G. Kadajji, G.V. Betageri, Water soluble polymers for pharmaceutical applications. Polymers 3, 1972–2009 (2011)CrossRefGoogle Scholar
  44. 44.
    R. Patil, J. Portilla-Arias, H. Ding, B. Konda, A. Rekechenetskiy, S. Inoue, K.L. Black, E. Holler, J.Y. Ljubimova, Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly (β-L-malic acid). Int. J. Mol. Sci. 13, 11681–11693 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    R. Baumgartner, D. Kuai, J. Cheng, Synthesis of controlled, high-molecular weight poly (l-glutamic acid) brush polymers. Biomater. Sci. 5, 1836–1844 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Y. Cao, M. Gao, C. Chen, A. Fan, J. Zhang, D. Kong, Z. Wang, D. Peer, Y. Zhao, Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 26, 115101 (2015)CrossRefPubMedGoogle Scholar
  47. 47.
    S. Honary, F. Zahir, Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop. J. Pharm. Res. 12, 265–273 (2013)Google Scholar
  48. 48.
    U. Kedar, P. Phutane, S. Shidhaye, V. Kadam, Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 6, 714–729 (2010)CrossRefPubMedGoogle Scholar
  49. 49.
    R.S. Shula, Z. Chen, K. Cheng, Strategies of drug delivery, in Advanced Drug Delivery, ed. by A.K. Mitra, C.H. Lee, K. Cheng (Wiley, New Jersey, 2015)Google Scholar
  50. 50.
    P. Ferruti, E. Ranucci, F. Trotta, E. Gianasi, E.G. Evagorou, M. Wasil, G. Wilson, R. Duncan, Synthesis, characterisation and antitumour activity of platinum (II) complexes of novel functionalised poly(amidoamine)s. Macromol. Chem. Phys 200, 1644–1654 (1999)CrossRefGoogle Scholar
  51. 51.
    M.J. Johnston, S.C. Semple, S.K. Klimuk, K. Edwards, M.L. Eisenhardt, E.C. Leng, G. Karlsson, D. Correctyanko, P.R. Cullis, Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochim. Biophys. Acta. 1758, 55–64 (2006)CrossRefPubMedGoogle Scholar
  52. 52.
    E. Ranucci, G. Spagnoli, P. Ferruti, D. Sgouras, R. Duncan, Poly(amidoamine)s with potential as drug carriers: degradation and cellular toxicity. J. Biomater. Sci. Polym. Ed. 2, 303–315 (1991)CrossRefPubMedGoogle Scholar
  53. 53.
    S. Richardson, P. Ferruti, R. Duncan, Poly(amidoamine)s as potential endosomolytic polymers: evaluation in vitro and body distribution in normal and tumour-bearing animals. J. Drug Target 6, 391–404 (1999)CrossRefPubMedGoogle Scholar
  54. 54.
    H.S. Oberoi, N.V. Nukolova, Y. Zhao, S.M. Cohen, A.V. Kabanov, T.K. Bronich, Preparation and in vivo evaluation of dichloro (1,2-diaminocyclohexane) platinum (II)-loaded core cross-linked polymer micelles. Chemother. Res. Pract. (2012).  https://doi.org/10.1155/2012/905796 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    W. Li, M. Jiang, Y. Cao, L. Yan, R. Qi, Y. Li, X. Jing, Turning ineffective transplatin into a highly potent anticancer drug via a prodrug strategy for drug delivery and inhibiting cisplatin drug resistance. Bioconj. Chem. 27, 1802–1806 (2016)CrossRefGoogle Scholar
  56. 56.
    E.W. Neuse, G. Caldwell, A.G. Perlwitz, Cis-diaminedichloroplatinum(II) complexes reversibly bound to water-soluble polyaspartamide carriers for chemotherapeutic applications. 2. Platinum coordination to ethylenediamine ligands attached to poly(ethylene oxide)-grafted carrier polymers. J. Inorg. Organomet. Polym. 5, 195–207 (1995)CrossRefGoogle Scholar
  57. 57.
    W.C. Shen, K. Beloussow, M.G. Meirim, E.W. Neuse, G. Caldwell, Antiproliferative activity of polymer-bound, monoamine-coordinated platinum complexes against LNCaP human metastatic prostate adenocarcinoma cells. J. Inorg. Organomet. Polym. 10, 51–60 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and AgricultureAlice Campus, University of Fort HareAliceSouth Africa
  2. 2.Department of ChemistryAuckland Park Campus, University of JohannesburgJohannesburgSouth Africa
  3. 3.DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial ResearchPretoriaSouth Africa
  4. 4.Department of Pharmacology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
  5. 5.Polymer and Composites, CSIR Materials Science and ManufacturingPretoriaSouth Africa

Personalised recommendations