Highly Pure Brookite Phase of TiO2 from Salicylaldehyde Modified Titanium(IV) Isopropoxide: Synthesis, Characterization and Photocatalytic Applications

  • Anita Raj Sanwaria
  • Ram Gopal
  • Jyoti Jain
  • Meena NagarEmail author
  • Archana ChaudharyEmail author


The present work focuses on the synthesis of brookite phase of titania by simple sol–gel route using single source molecular precursors (SSMPs); [Ti(OPri)2(CH2OC6H4O)] (1) and [Ti(OPri)(CH2OC6H4O)(CHOC6H4O)] (2), which is otherwise difficult to obtain in its pure form. Both the precursors have been characterized by 1H & 13C{1H} NMR, FT-IR, ESI–MS techniques whereas the titania samples have been characterized by PXRD patterns, SEM and TEM images. For inspecting the utility of synthesized titania, phtocatalytic degradation of dyes congo red (cationic) and new methylene blue (anionic) have also been performed. In both the cases, the synthesized titania showed excellent efficiency advocating its practical application in dye industry.


Salicylaldehyde modified titanium(IV) isopropoxide Nano-size titania Brookite (orthorhombic) phase Sol–gel synthesis Photocatalyst 



We are highly thankful to University of Rajasthan, Jaipur and IIT Indore for financial support. A. C. thanks DST, New Delhi for research grant under WOS-A Scheme (SR/WOS-A/CS-1020/2015). A. R. Sanwaria thanks UGC New Dehli for PDF-WM. We are grateful to the Department of Physics and USIC, UOR for XRD, EDX, SEM and TEM analyses and Therachem Research Medilab, Jaipur for ESI mass analyses.


  1. 1.
    G. Nabi, Qurat-ul-Aain, N.R. Khalid, M.B. Tahir, M. Rafique, M. Rizwan, S. Hussain, T. Iqbal, A. Majid, A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts. J. Inorg. Organomet. Polym. Mater. 28, 1552–1564 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Xiao, J. Li, B. He, Anatase-titania templated by nanofibrillated cellulose and photocatalytic degradation for methyl orange. J. Inorg. Organomet. Polym. Mater. 27, 1022–1027 (2017)CrossRefGoogle Scholar
  3. 3.
    S.A. Mansour, A.H. Farha, M.F. Kotkata, Sol–gel synthesized Co-doped anatase TiO2 nanoparticles: structural, optical, and magnetic characterization. J. Inorg. Organomet. Polym. Mater. 29, 1375–1382 (2019)CrossRefGoogle Scholar
  4. 4.
    M.B.R. Prasad, H.M. Pathan, Room temperature synthesis of rutile titania nanoparticles: a thermodynamic perspective. Eur. Phys. J. D 68, 25 (2014)CrossRefGoogle Scholar
  5. 5.
    X. Ning, J. Huang, L. Li, Y. Gu, S. Jia, R. Qiu, S. Li, B.H. Kim, Homostructured rutile TiO2 nanotree arrays thin film electrodes with nitrogen doping for enhanced photoelectrochemical performance. J. Mater. Sci.: Mater. Electron. (2019). Google Scholar
  6. 6.
    A. Chaudhary, N. Sharma, V. Dhayal, A. Saxena, M. Nagar, R. Bohra, Synthesis and characterization of some bis(cyclopentadienyl)titanium(IV) complexes with internally functionalized oximes(LH): sol-gel transformations of Cp2TiCl2, Cp2TiClL and Cp2TiL2 to nano-sized anatase titania. Appl. Organomet. Chem. 25, 198–206 (2011)CrossRefGoogle Scholar
  7. 7.
    A.D. Paola, M. Bellardita, L. Palmisano, Brookite, the least known TiO2 photocatalyst. Catalysts 3, 36–73 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Kominami, Y. Ishii, M. Kohno, S. Konishi, Y. Kera, B. Ohtani, Nanocrystalline brookite-type titanium(IV) oxide photocatalysts prepared by a solvothermal method: correlation between their physical properties and photocatalytic activities. Catal. Lett. 91, 41–47 (2003)CrossRefGoogle Scholar
  9. 9.
    L. Zhang, V.M. Menendez-Flores, N. Murakami, T. Ohno, Improvement of photocatalytic activity of brookite titanium dioxide nanorods by surface modification using chemical etching. Appl. Surf. Sci. 258, 5803–5809 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Choi, J. Lim, M. Baek, W. Choi, W. Kim, K. Yong, Investigating the unrevealed photocatalytic activity and stability of nano-structured brookite TiO2 film as an environmental photocatalyst. ACS Appl. Mater. Interfaces 9, 16252–16260 (2017)CrossRefGoogle Scholar
  11. 11.
    Z. Li, S. Cong, Y. Xu, Brookite vs anatase TiO2 in the photocatalytic activity for organic degradation in water. ACS Catal. 4, 3273–3280 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Cao, X. Li, Z. Bian, A. Fuhr, D. Zhang, J. Zhua, Highly photocatalytic activity of brookite/rutile TiO2 nanocrystals with semi-embedded structure. Appl. Catal. B 180, 551–558 (2016)CrossRefGoogle Scholar
  13. 13.
    J.J.M. Vequizo, H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, A. Yamakata, Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders. ACS Catal. 7, 2644–2651 (2017)CrossRefGoogle Scholar
  14. 14.
    T.R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R.T. Weber, P. Fornasiero, C.B. Murray, Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 134, 6751–6761 (2012)CrossRefGoogle Scholar
  15. 15.
    S.V. Nipane, P.V. Korake, G.S. Gokavi, Graphene-zinc oxide Nanorod nanocomposite as photocatalyst for enhanced degradation of dyes under UV light irradiation. Ceram. Int. 41, 4549–4557 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Chaudhary, A. Mohammad, S.M. Mobin, Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Mater. Sci. Eng. B 227, 136–144 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Li, C. Tang, D. Li, H. Haneda, T. Ishigaki, Monodispersed spherical particles of brookite-type TiO2: synthesis, characterization, and photocatalytic property. J. Am. Ceram. Soc. 87, 1358–1361 (2004)CrossRefGoogle Scholar
  18. 18.
    M.S. Bakshi, How surfactants control crystal growth of nanomaterials. Cryst. Growth Des. 16, 1104–1133 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Kumari, R. Gopal, A. Goyal, J. Joshi, Sol–gel synthesis of Pd@PdO core–shell nanoparticles and effect of precursor chemistry on their structural and optical properties. J. Inorg. Organomet. Polym. Mater. 29, 316–325 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Gopal, A. Goyal, A. Saini, M. Nagar, N. Sharma, D.K. Gupta, V. Dhayal, Sol-gel synthesis of Ga2O3 nanorods and effect of precursor chemistry on their structural and morphological properties. Ceram. Int. 44, 19099–19105 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Chaudhary, V. Dhayal, M. Nagar, R. Bohra, S.M. Mobin, P. Mathur, Chemically modified oximato complexes of titanium(IV) isopropoxide as new precursors for the sol–gel preparation of nano-sized titania: crystal and molecular structure of [Ti{ONC10H16}4.2CH2Cl2]. Polyhedron 30, 821–831 (2011)CrossRefGoogle Scholar
  22. 22.
    A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, 5th edn. (Wiley, Longman, 1989)Google Scholar
  23. 23.
    D.C. Bradely, D.C. Hancock, W. Wardlaw, Titanium chloride alkoxides. J. Chem. Soc. 1952, 2773–2779 (1952)CrossRefGoogle Scholar
  24. 24.
    D.C. Bradley, F.M. Abd-el-Halim, R.C. Mehrotra, W. Wardlaw, Reactions of acetyl chloride with zirconium alkoxides. J. Chem. Soc. 1952, 4609–4615 (1952)CrossRefGoogle Scholar
  25. 25.
    D.C. Bradely, R.C. Mehrotra, I.P. Rothewell, A. Singh, Alkoxo and Aryloxo Derivatives of Metals (Academic Press, London (UK), 2001)Google Scholar
  26. 26.
    D.C. Bradley, W. Wardlaw, Zirconium esters. Nature 165, 75–76 (1950)CrossRefGoogle Scholar
  27. 27.
    R.C. Mehrotra, I.D. Verma, Reactions of ortho-esters of titanium: IV salicylaldehyde derivatives of titanium. J. Less-Common Met. 3, 321–326 (1961)CrossRefGoogle Scholar
  28. 28.
    A. Singh, A.K. Rai, R.C. Mehrotra, Reactions of oximes with zirconium isopropoxide. Inorg. Chim. Acta 7, 450–452 (1973)CrossRefGoogle Scholar
  29. 29.
    B.E. Warren, X-ray Diffraction (Dover publication, New York, 1990)Google Scholar
  30. 30.
    A. Mills, A. Lepre, N. Elliott, S. Bhopal, I.P. Parkin, S.A. O’Neill, Characterisation of the photocatalyst pilkingtonactiv (tm): a reference film photocatalyst. J. Photochem. Photobiol. A 160, 213–224 (2003)CrossRefGoogle Scholar
  31. 31.
    T. Busani, R.A.B. Devine, Dielectric and infrared properties of TiO2 films containing anatase and rutile. Semicond. Sci. Technol. 20, 870–877 (2005)CrossRefGoogle Scholar
  32. 32.
    J. Tauc, Amorphous & Liquid Semiconductors (Plenum, New York, 1974)CrossRefGoogle Scholar
  33. 33.
    T. Guang-Lei, H. Hong-Bo, S. Jian-Da, Effect of microstructure of TiO2 thin films on optical band gap energy. Chin. Phys. Lett. 22, 1787–1792 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of RajasthanJaipurIndia
  2. 2.Discipline of ChemistryIndian Institute of Technology IndoreIndoreIndia
  3. 3.Department of ChemistryMedi-Caps UniversityIndoreIndia

Personalised recommendations