Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Jet Nebulizer Sprayed WO3-Nanoplate Arrays for High-Photoresponsivity Based Metal–Insulator–Semiconductor Structured Schottky Barrier Diodes

  • 46 Accesses

  • 1 Citations

Abstract

Monoclinic WO3-nanoplate arrays have been effectively deposited via simple jet nebulizer spray pyrolysis technique at an optimized substrate temperature of 400 °C. These WO3-nanoplate arrays were used as an insulating layer in the metal–insulator–semiconductor (MIS) structure based Schottky barrier diodes. The effect of WO3 mol concentration during the deposition process was systematically interpreted with respect to the structural, morphological, optical and electrical properties of WO3-nanoplate array films. XRD pattern exposed the polycrystalline nature of the prepared films with a monoclinic phase. At higher concentration of 0.25 M WO3-nanoplates were firmly interconnected together and has been analyzed by a FE-SEM. From UV–Vis spectroscopy, the band gap values of the WO3 were found to vary from 3.2 to 3.4 eV with mole concentrations. DC electrical study recorded a steep increase in the electrical conductivity for the film prepared with 0.2 M of WO3. Notably, all the diodes exhibited positive photoresponse under illumination. Particularly, the MIS diode fabricated with 0.2 M revealed higher photoresponsivity and sensitivity of 960.85% and 33.40 mA W−1 respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    K. Sasikumar, R. Bharathikannan, M. Raja, Silicon 11, 137 (2019)

  2. 2.

    J. Kim, A.I. Inamdar, Y. Jo, H. Woo, S. Cho, S.M. Pawar, H. Kim, H. Im, ACS Appl. Mater. Interfaces 8, 9499 (2016)

  3. 3.

    N. Nanda Kumar Reddy, H.S. Akkera, M.C. Sekhar, S. Uthanna, Silicon 11, 159 (2019)

  4. 4.

    G.M. Kumar, P. Ilanchezhiyan, F. Xiao, C. Siva, A.M. Kumar, V. Yalishev, S.U. Yuldashev, T.W. Kang, RSC Adv. 6, 57941 (2016)

  5. 5.

    J. Semple, D.G. Georgiadou, G. Wyatt-moon, Semicond. Sci. Technol. 32, 123002 (2017)

  6. 6.

    J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van De Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, J.A. Simmons, Adv. Electron. Mater. 4, 1600501 (2017)

  7. 7.

    E. Monroy, F. Omn, F. Calle, Semicond. Sci. Technol. 18, 33 (2003)

  8. 8.

    J.B. Casady, R.W. Johnson, Solid-State Electron. 39, 1409 (1996)

  9. 9.

    M.N. Yoder, S. Member, IEEE Trans. Electron. Dev. 43, 1633 (1996)

  10. 10.

    C.H. Lin, C.W. Liu, Sensors 10, 8797 (2010)

  11. 11.

    A. Büyükbaş Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci.: Mater. Electron. 29, 159 (2018)

  12. 12.

    S. Mahato, C. Voz, D. Biswas, S. Bhunia, J. Puigdollers, Mater. Res. Express 6, 036303 (2018)

  13. 13.

    Ç. Bilkan, Y. Badali, S. Fotouhi-Shablou, Y. Azizian-Kalandaragh, Ş. Altındal, Appl. Phys. A 123, 560 (2017)

  14. 14.

    H. Tanrıkulu, A. Tataroğlu, E.E. Tanrıkulu, A.B. Uluşan, Indian J. Pure Appl. Phy. 56, 142 (2018)

  15. 15.

    N. Balaram, M.S. Pratap, V.R. Reddy, C. Park, Thin Solid Films 619, 231 (2016)

  16. 16.

    A. Shetty, B. Roul, S. Mukundan, L. Mohan, G. Chandan, K.J. Vinoy, S.B. Krupanidhi, AIP Adv. 5, 097103 (2015)

  17. 17.

    Y. Liu, P.T. Lai, W.M. Tang, IEEE Int. Conf. Electron Dev. Solid State Circuits (2016). https://doi.org/10.1109/EDSSC.2016.7785277

  18. 18.

    A.G.A. Ahmed, H. Bostancı, A. Hartomy, A. Omar, M. Soylu, E.F. Tantawy, F. Yakuphanoglu, J. Nanoelectron. Optoelectron. 9, 327 (2014)

  19. 19.

    D. Shao, M. Yu, J. Lian, S. Sawyer, Nanotechnology 24, 295701 (2013)

  20. 20.

    Y. Liu, W.M. Tang, P.T. Lai, Appl. Phys. Lett. 107, 073506 (2015)

  21. 21.

    P.P. González-Borrero, F. Sato, A.N. Medina, M.L. Baesso, A.C. Bento, Appl. Phys. Lett. 96, 061909 (2010)

  22. 22.

    Y.S. Zou, Y.C. Zhang, D. Lou, H.P. Wang, L. Gu, Y.H. Dong, K. Dou, X.F. Song, H.B. Zeng, J. Alloy Compds. 583, 465 (2014)

  23. 23.

    C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, U. Becker, J. Phys. Chem. B 110, 10430 (2006)

  24. 24.

    R.S. Vemuri, K.K. Bharathi, S.K. Gullapalli, C.V. Ramana, ACS Appl. Mater. Interfaces 2, 2623 (2010)

  25. 25.

    S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, J. Mater. Sci.: Mater. Electron. 28, 14446 (2017)

  26. 26.

    A. Faudoa-Arzate, A. Arteaga-Durán, R.J. Saenz-Hernández, M.E. Botello-Zubiate, P.R. Realyvazquez-Guevara, J.A. Matutes-Aquino, Materials 10, 200 (2017)

  27. 27.

    R. Godbole, V.P. Godbole, P.S. Alegaonkar, S. Bhagwat, New J. Chem. 41, 11807 (2017)

  28. 28.

    S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim, P.S. Patil, Sens. Actuator B 240, 426 (2017)

  29. 29.

    M. Raja, J. Chandrasekaran, M. Balaji, B. Janarthanan, Mater. Sci. Semicond. Process. 56, 145 (2016)

  30. 30.

    S. Bai, K. Zhang, R. Luo, D. Li, A. Chen, C.C. Liu, J. Mater. Chem. 22, 12643 (2012)

  31. 31.

    H. Li, Y. Zhou, L. Chen, W. Luo, Q. Xu, X. Wang, M. Xiaoc, Z. Zou, Nanoscale 5, 11933 (2013)

  32. 32.

    S.M. Yong, T. Nikolay, B.T. Ahn, D.K. Kim, J. Alloy. Compd. 547, 113 (2013)

  33. 33.

    Q. Chen, X. Lai, M.L. Yan, G.R. Tang, J.Y. Luo, J. Chen, W.G. Xie, Adv. Mater. Res. 774–776, 687 (2013)

  34. 34.

    J. Su, X. Feng, J.D. Sloppy, L. Guo, C.A. Grimes, Nano Lett. 11, 203 (2011)

  35. 35.

    N. Sethupathi, P. Thirunavukkarasu, V.S. Vidhya, R. Thangamuthu, G.V.M. Kiruthika, K. Perumal, H.C. Bajaj, M. Jayachandran, J. Mater. Sci.: Mater. Electron. 23, 1087 (2012)

  36. 36.

    K. Shanmugasundaram, P. Thirunavukkarasu, M. Ramamurthy, M. Balaji, J. Chandrasekaran, Orient. J. Chem. 33, 2484 (2017)

  37. 37.

    R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, S. Maruthamuthu, P. Balraju, Superlattice Microstruct. 119, 134 (2018)

  38. 38.

    M. Manickam, V. Ponnuswamy, C. Sankar, R. Suresh, Optik 127, 5278 (2016)

  39. 39.

    P. Prathap, N. Revathi, Y.P. Venkata Subbaiah, K.T. Ramakrishna Reddy, J. Phys. Condens. Matter 20, 035205 (2008)

  40. 40.

    Y. Yang, R. Xie, Y. Liu, J. Li, W. Li, Catalysts 5, 2024 (2015)

  41. 41.

    Q. Chen, J. Li, B. Zhou, M. Long, H. Chen, Y. Liu, W. Cai, W. Shangguan, Electrochem. Commun. 20, 153 (2012)

  42. 42.

    B. Liu, Y. Wang, H. Jiang, B. Zou, J. Nanomater. (2017). https://doi.org/10.1155/2017/2494109

  43. 43.

    R. Azimirad, P. Khosravi, A.Z. Moshfegh, J. Exp. Nanosci. 7, 597 (2012)

  44. 44.

    S.S. Kalanur, Y.J. Hwang, S.Y. Chae, O.S. Joo, J. Mater. Chem. A 1, 3479 (2013)

  45. 45.

    J.R.G. Navarro, A. Mayence, J. Andrade, F. Lerouge, F. Chaput, P. Oleynikov, A. Pawlicka, Langmuir 30, 10487 (2014)

  46. 46.

    J. Zhang, J.P. Tu, X.H. Xia, X.L. Wang, C.D. Gu, J. Mater. Chem. 21, 5492 (2011)

  47. 47.

    J. Zhang, J. Tu, G. Du, Z. Dong, Y. Wu, L. Chang, D. Xie, Sol. Energy Mater. Sol. Cells 114, 31 (2013)

  48. 48.

    T. Zhang, J. Su, L. Guo, Cryst. Eng. Commun. 18, 8961 (2016)

  49. 49.

    B. Zhou, W. Feng, G. Gao, G. Wu, Y. Chen, W. Li, Mater. Res. Express 4, 115702 (2017)

  50. 50.

    S. Zhuiykov, E. Kats, Nanoscale Res. Lett. 9, 401 (2014)

  51. 51.

    S.S. Shendage, V.L. Patil, S.P. Patil, S.A. Vanalakar, J.L. Bhosale, J.H. Kim, P.S. Patil, J. Anal. Appl. Pyrolysis 125, 9 (2017)

  52. 52.

    R. Mukherjee, A. Kushwaha, P.P. Sahay, Electron. Mater. Lett. 10, 401 (2014)

  53. 53.

    T.D. Dongale, S.V. Mohite, A.A. Bagade, P.K. Gaikwad, P.S. Patil, R.K. Kamat, K.Y. Rajpure, Electron. Mater. Lett. 11, 944 (2015)

  54. 54.

    V.V. Ganbavle, J.H. Kim, K.Y. Rajpure, J. Electron. Mater. 44, 874 (2015)

  55. 55.

    M. Yaacob, J. Ou, C. Oh, J. Kang, G. Sberveglieri, W. Wlodarski, Procedia Eng. 25, 1065 (2011)

  56. 56.

    V.V. Ganbavle, G.L. Agawane, A.V. Moholkar, J.H. Kim, K.Y. Rajpure, J. Mater. Eng. Perform. 23, 1204 (2014)

  57. 57.

    S.Y. Chae, H. Jung, H.S. Jeon, B.K. Min, Y.J. Hwang, O.S. Joo, J. Mater. Chem. 2, 11408 (2014)

  58. 58.

    X. Li, T. Lou, X. Sun, Y.D. Li, Inorg. Chem. 43, 9079 (2004)

  59. 59.

    V.V. Kondalkar, S.S. Mali, R.R. Kharade, K.V. Khot, P.B. Patil, R.M. Mane, P.N. Bhosale, Dalton Trans. 44, 2788 (2015)

  60. 60.

    S.R. Bathe, P.S. Patil, Sol. Energy Mater. Sol. Cells 91, 1097 (2007)

  61. 61.

    J.Z. Ou, S. Balendhran, M.R. Field, D.G. McCulloch, A.S. Zoolfakar, R.A. Rani, K. Kalantar-zadeh, Nanoscale 4, 5980 (2012)

  62. 62.

    F. Zheng, H. Lu, M. Guo, M. Zhang, Cryst. Eng. Commun. 15, 5828 (2013)

  63. 63.

    S.H. Ahn, J. Zhao, J.H. Kim, X. Zheng, Electrochim. Acta 244, 184 (2017)

  64. 64.

    P.A. Shinde, A.C. Lokhande, N.R. Chodankar, A.M. Patil, J.H. Kim, C.D. Lokhande, Electrochim. Acta 224, 397 (2017)

  65. 65.

    S. Poongodi, P. Suresh, D. Mangalaraj, N. Ponpandian, P. Meena, Y. Masuda, C. Lee, J. Alloys Compds. 719, 71 (2017)

  66. 66.

    M. Mai, X. Ma, H. Zhou, M. Ye, T. Li, S. Ke, P. Lin, X. Zeng, J. Alloys Compds. 722, 913 (2017)

  67. 67.

    R. Kadir, W. Zhang, Y. Wang, J.Z. Ou, W. Wlodarski, A.P. O’Mullane, K. Kalantar-zadeh, J. Mater. Chem. A 3, 7994 (2015)

  68. 68.

    C. Liu, Y. Yang, W. Li, J. Li, Y. Li, Q. Chen, Sci. Rep. 6, 23451 (2016)

  69. 69.

    S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim, P.S. Patil, Sens. Actuators B 240, 426 (2017)

  70. 70.

    W. Li, C. Liu, Y. Yang, J. Li, Q. Chen, F. Liu, Mater. Lett. 84, 41 (2012)

  71. 71.

    M. Balaji, J. Chandrasekaran, M. Raja, Mater. Sci. Semicond. Process. 43, 104 (2016)

  72. 72.

    C. Das, J. Begum, T. Begum, S. Choudhury, J. Bangladesh Acad. Sci. 37, 83 (2013)

  73. 73.

    R. Suresh, V. Ponnuswamy, R. Mariappan, Int. J. Thin Films Sci. Technol. 4, 35–44 (2015)

  74. 74.

    R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickam, R. Mariappan, Ceram. Int. 42, 12715 (2016)

  75. 75.

    Al Mohammad, Phys. Status Solidi A 205, 2880 (2008)

  76. 76.

    J. Mashaiekhya, Z. Shafieizadeh, H. Nahidi, Eur. Phys. J. Appl. Phys. 60, 20301 (2012)

  77. 77.

    J.M. Patil, S.B. Patil, R.H. Bari, A.N. Sonar, Phys. Astron. 53, 71 (2015)

  78. 78.

    Z. Khalifa, M. Aly, A.A. Aboud, J. Nanomater. 1, 1 (2013)

  79. 79.

    H. Wang, T. Lindgren, J. He, A. Hagfeldt, S.E. Lindquist, J. Phys. Chem. B 104, 5686 (2000)

  80. 80.

    S. Alialy, Ş. Altındal, E.E. Tanrıkulu, D.E. Yıldız, J. Appl. Phys. 116, 083709 (2014)

  81. 81.

    S. Altındal, H. Kanbur, D.E. Yıldız, M. Parlak, Appl. Surf. Sci. 253, 5056 (2007)

  82. 82.

    H.K. Khanfar, A.F. Qasrawi, Y.A. Zakarneh, N.M. Gasanly, IEEE Sens. J. 17, 4429 (2017)

  83. 83.

    B. Prasanna Lakshmi, V. Rajagopal Reddy, V. Janardhanam, M. Siva Pratap Reddy, J.H. Lee, Appl. Phys. A 113, 713 (2013)

  84. 84.

    H. Tanaka, T. Kawazoe, M. Ohtsu, Appl. Phys. B 108, 51 (2012)

  85. 85.

    D.H. Wu, Y.Y. Zhang, M. Razeghi, Appl. Phys. Lett. 112, 111103 (2018)

  86. 86.

    D.H. Shin, S.H. Choi, Micromachines 9, 350 (2018)

  87. 87.

    T. Dai, Y. Liu, X. Fan, X. Liu, D. Xie, Y. Li, Nanophotonics (2018). https://doi.org/10.1515/nanoph-2018-015

  88. 88.

    X. Tong, W. Kong, Y. Wang, J. Zhu, L. Luo, Z. Wang, ACS Appl. Mater. Inter. 9, 18977 (2017)

  89. 89.

    G. Chen, Y. Yu, K. Zheng, T. Ding, W. Wang, Y. Jiang, Q. Yang, Small 11, 2848 (2015)

  90. 90.

    D. Ghosh, S. Kapri, S. Bhattacharyya, ACS Appl. Mater. Interfaces 8, 35496 (2016)

  91. 91.

    X. Gong, M. Tong, S.H. Park, M. Liu, A. Jen, A.J. Heeger, Sensors 10, 6488 (2010)

  92. 92.

    B.H. Kang, W. Kim, J. Chung, J.H. Lee, H.J. Kim, ACS Appl. Mater. Interfaces 10, 7223 (2018)

  93. 93.

    X. Zhang, B. Liu, Q. Liu, W. Yang, C. Xiong, J. Li, X. Jiang, ACS Appl. Mater. Interfaces 9, 2669 (2017)

  94. 94.

    P. Ramasamy, D. Kwak, D.H. Lim, H.S. Ra, J.S. Lee, J. Mater. Chem. C 4, 479 (2016)

  95. 95.

    Z. Zhang, J. Yang, F. Mei, G. Shen, Front. Optoelectron. (2018). https://doi.org/10.1007/s12200-018-0820-2

  96. 96.

    M. Shahid, Y. Wang, J. Yang, T. Li, J. Cheng, M. Zhang, Y. Xing, C. Wan, W. Pan, Adv. Mater. Interfaces 4, 1700909 (2017)

  97. 97.

    D.H. Shin, C.W. Jang, J.H. Kim, J.M. Kim, H.S. Lee, S.W. Seo, S. Kim, S.H. Choi, J. Mater. Chem. C 5, 12737 (2017)

  98. 98.

    X. Song, Y. Zhang, H. Zhang, M. Cao, Y. Che, J. Wang, J. Yang, X. Ding, J. Yao, X. Song, Y. Zhang, H. Zhang, Y. Yu, Mater. Lett. 178, 52 (2013)

  99. 99.

    J. Yao, G. Yang, Small 14, 1704524 (2018)

  100. 100.

    Y. Zhang, T. Ji, W. Zhang, G. Guan, Q. Ren, K. Xu, X. Huang, R. Zou, J. Hu, J. Mater. Chem. C 5, 12520 (2017)

  101. 101.

    Z.Q. Zheng, J.D. Yao, G.W. Yang, J. Mater. Chem. C 4, 8094 (2016)

  102. 102.

    Z. Zheng, J. Yao, B. Wang, Y. Yang, G. Yang, J. Li, ACS Appl. Mater. Interfaces 9, 43830 (2017)

  103. 103.

    M. Thambidurai, Y. Jang, A. Shapiro, G. Yuan, H. Xiaonan, Y. Xuechao, Q.J. Wang, E. Lifshitz, H.V. Demir, C. Dang, Opt. Mater. Express 7, 2326 (2017)

  104. 104.

    G. Hyseni, N. Caka, K. Hyseni, Wseas Trans. Circuits Syst. 9, 238 (2010)

  105. 105.

    G.G. Valdiviesoa, H.R.N. Contrerasa, G.V. Revelesa, F.J. Gonzáleza, T.J. Simmonsc, M. Gutiérrez Hernándeza, M. Quintanad, J.G.N. Navarroaa, Sens. Actuators B 238, 880 (2017)

  106. 106.

    C.C. Chang, K.P. Chu, Y.C. Lai, J. Sci. Eng. Sect. 8, 203 (2005)

  107. 107.

    P.A. Shaikh, D. Shi, J.R.D. Retamal, A.D. Sheikh, M.A. Haque, C.F. Kang, J.H. He, O.M. Bakr, T. Wu, J. Mater. Chem. (2013). https://doi.org/10.1039/C6TC02828D

  108. 108.

    D. Shao, M. Yu, J. Lian, S. Sawyer, Opt. Mater. 36, 1002 (2014)

  109. 109.

    R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickam, R. Mariappan, Ceram. Int. 42, 12715 (2016)

  110. 110.

    S. Sil, A. Dey, J. Datta, M. Das, R. Jana, S. Halder, J. Dhara, D. Sanyalb, P.P. Raya, Mater. Res. Bull. 106, 337 (2018)

  111. 111.

    C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, Nano Res. 11, 3371 (2018)

  112. 112.

    G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P.M. Ajayan, J. Lou, H. Peng, Nano Lett. 15, 506 (2015)

  113. 113.

    B. Chitara, L.S. Panchakarla, S.B. Krupanidhi, C.N.R. Rao, Adv. Mater. 23, 5419 (2011)

  114. 114.

    A.A. Ahmed, M. Devarajan, N. Afza, Sens. Actuator A 262, 78 (2017)

  115. 115.

    S. Aslama, R.E. Vestc, D. Franza, F. Yana, Y. Zhaod, B. Mott, Nucl. Instrum. Methods Phys. Res. 539, 84 (2005)

  116. 116.

    H. Zhang, X. Zhang, C. Liu, S.T. Lee, J. Jie, ACS Nano 10, 5113 (2016)

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the DST, Government of India, for the major Research Project (EMR/2016/007874).

Author information

Correspondence to J. Chandrasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marnadu, R., Chandrasekaran, J., Maruthamuthu, S. et al. Jet Nebulizer Sprayed WO3-Nanoplate Arrays for High-Photoresponsivity Based Metal–Insulator–Semiconductor Structured Schottky Barrier Diodes. J Inorg Organomet Polym 30, 731–748 (2020). https://doi.org/10.1007/s10904-019-01285-y

Download citation

Keywords

  • Tungsten trioxide (WO3) thin films
  • JNSP technique
  • WO3-nanoplates
  • Mole concentration
  • Schottky barrier diodes