New AIE-Active Copolymers with Au(I) Isocyanide Acrylate Units

  • Jing Zhang
  • Hang Zou
  • Xiaoyan Wang
  • Benzhao He
  • Sheng Hua LiuEmail author
  • Jacky W. Y. LamEmail author
  • Ben Zhong TangEmail author


The development of new organometallic materials with aggregation-induced emission (AIE) characteristics is pursuing due to their wide prospects in various application fields. In this work, we synthesized Au(I)-containing copolymers (P13) by copolymerization of methyl methacrylate (MMA) monomers, carrying Au(I) isocyanide acrylate unit and MMA in different molar ratios. All polymers exhibited AIE activities due to the introduction of the Au(I) isocyanide units. Increasing the Au(I) content in the polymers could effectively facilitate their emission. In addition, polymer P3 was demonstrated as a sensitive fluorescent probe for explosive detection.


Aggregation-induced emission Au(I) isocyanide Fluorescent sensor Explosive detection 



We are grateful for financial support from the National Natural Science Foundation of China (21788102, 21490570, 21490574 and 21472059), the Research Grants Council of Hong Kong (16305618, C6009-17G, and A-HKUST605/16), the Innovation and Technology Commission (ITC-CNERC14SC01), and the Science and Technology Plan of Shenzhen (JCYJ20160229205601482 and JCYJ20170818113602462).

Supplementary material

10904_2019_1279_MOESM1_ESM.doc (11 mb)
Supplementary material 1 (DOC 11282 kb)


  1. 1.
    C.-T. Chen, Chem. Mater. 16, 4389–4400 (2004)CrossRefGoogle Scholar
  2. 2.
    R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, M. Lögdlund, Nature 397, 121 (1999)CrossRefGoogle Scholar
  3. 3.
    J. Luo, Z. Xie, J.W.Y. Lam, L. Cheng, H. Chen, C. Qiu, H.S. Kwok, X. Zhan, Y. Liu, D. Zhu, B.Z. Tang, Chem. Commun. 18, 1740–1741 (2001)CrossRefGoogle Scholar
  4. 4.
    J. Mei, Y. Hong, J.W.Y. Lam, A. Qin, Y. Tang, B.Z. Tang, Adv. Mater. 26, 5429–5479 (2014)CrossRefGoogle Scholar
  5. 5.
    B. Chen, B. Liu, J. Zeng, H. Nie, Y. Xiong, J. Zou, H. Ning, Z. Wang, Z. Zhao, B.Z. Tang, Adv. Funct. Mater. 28, 1803369 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Liu, J. Zeng, J. Guo, H. Nie, Z. Zhao, B.Z. Tang, Angew. Chem. Int. Ed. 57, 9290–9294 (2018)CrossRefGoogle Scholar
  7. 7.
    S.-C. Lo, P.L. Burn, Chem. Rev. 107, 1097–1116 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Moliton, R.C. Hiorns, Polym. Int. 53, 1397–1412 (2004)CrossRefGoogle Scholar
  9. 9.
    X. Feng, L. Liu, S. Wang, D. Zhu, Chem. Soc. Rev. 39, 2411–2419 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Qin, J.W.Y. Lam, B.Z. Tang, Prog. Polym. Sci. 37, 182–209 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Qin, J.W.Y. Lam, L. Tang, C.K.W. Jim, H. Zhao, J. Sun, B.Z. Tang, Macromolecules 42, 1421–1424 (2009)CrossRefGoogle Scholar
  12. 12.
    T. Han, H. Deng, Z. Qiu, Z. Zhao, H. Zhang, H. Zou, N.L.C. Leung, G. Shan, M.R.J. Elsegood, J.W.Y. Lam, B.Z. Tang, J. Am. Chem. Soc. 140, 5588–5598 (2018)CrossRefGoogle Scholar
  13. 13.
    B. He, H. Su, T. Bai, Y. Wu, S. Li, M. Gao, R. Hu, Z. Zhao, A. Qin, J. Ling, B.Z. Tang, J. Am. Chem. Soc. 139, 5437–5443 (2017)CrossRefGoogle Scholar
  14. 14.
    B. He, Y. Wu, A. Qin, B.Z. Tang, Macromolecules 50, 5719–5728 (2017)CrossRefGoogle Scholar
  15. 15.
    R.-H. Chien, C.-T. Lai, J.-L. Hong, J. Phys. Chem. C 115, 12358–12366 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Pucci, R. Rausa, F. Ciardelli, Macromol. Chem. Phys. 209, 900–906 (2008)CrossRefGoogle Scholar
  17. 17.
    M.A. Rawashdeh-Omary, J.M. López-de-Luzuriaga, M.D. Rashdan, O. Elbjeirami, M. Monge, M. Rodríguez-Castillo, A. Laguna, J. Am. Chem. Soc. 131, 3824–3825 (2009)CrossRefGoogle Scholar
  18. 18.
    P. Nguyen, P. Gómez-Elipe, I. Manners, Chem. Rev. 99, 1515–1548 (1999)CrossRefGoogle Scholar
  19. 19.
    C.E. Carraher, M.R. Roner, K. Shahi, A. Moric-Johnson, L. Miller, G. Barot, A. Battin, N.T. Trang, M.H. Al-Huniti, J. Inorg. Organomet. Polym. Mater. 25, 386–399 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Zhai, H. Yu, L. Wang, Z. Deng, Z.U. Abdin, R. Tong, X. Yang, Y. Chen, M. Saleem, Appl. Organomet. Chem. 30, 62–72 (2016)CrossRefGoogle Scholar
  21. 21.
    A.S. Abd-El-Aziz, Macromol. Rapid Commun. 23, 995–1031 (2002)CrossRefGoogle Scholar
  22. 22.
    K.A. Williams, A.J. Boydston, C.W. Bielawski, Chem. Soc. Rev. 36, 729–744 (2007)CrossRefGoogle Scholar
  23. 23.
    X. Feng, X. Sui, M.A. Hempenius, G.J. Vancso, J. Am. Chem. Soc. 136, 7865–7868 (2014)CrossRefGoogle Scholar
  24. 24.
    W.-Y. Wong, Coord. Chem. Rev. 251, 2400–2427 (2007)CrossRefGoogle Scholar
  25. 25.
    K. Omri, N. Alonizan, J. Inorg. Organomet. Polym. Mater. 29, 203–212 (2019)CrossRefGoogle Scholar
  26. 26.
    K. Omri, A. Alyamani, L. El Mir, Appl. Phys. A 124, 215 (2018)CrossRefGoogle Scholar
  27. 27.
    M.N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 510, 485 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Lima, L. Rodríguez, Inorganics 3, 1 (2015)CrossRefGoogle Scholar
  29. 29.
    C. Jobbágy, A. Deák, Eur. J. Inorg. Chem. 2014, 4434–4449 (2014)CrossRefGoogle Scholar
  30. 30.
    T. Zou, C.-N. Lok, P.-K. Wan, Z.-F. Zhang, S.-K. Fung, C.-M. Che, Curr. Opin. Chem. Biol. 43, 30–36 (2018)CrossRefGoogle Scholar
  31. 31.
    E.R.T. Tiekink, Coord. Chem. Rev. 275, 130–153 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Pinto, N. Svahn, J.C. Lima, L. Rodríguez, Dalton Trans. 46, 11125–11139 (2017)CrossRefGoogle Scholar
  33. 33.
    Z. Luo, X. Yuan, Y. Yu, Q. Zhang, D.T. Leong, J.Y. Lee, J. Xie, J. Am. Chem. Soc. 134, 16662–16670 (2012)CrossRefGoogle Scholar
  34. 34.
    Z. Chen, Z. Li, F. Hu, G.-A. Yu, J. Yin, S.H. Liu, Dyes Pigments 125, 169–178 (2016)CrossRefGoogle Scholar
  35. 35.
    W.-X. Ni, M. Li, J. Zheng, S.-Z. Zhan, Y.-M. Qiu, S.W. Ng, D. Li, Angew. Chem. Int. Ed. 52, 13472–13476 (2013)CrossRefGoogle Scholar
  36. 36.
    Z. Chen, J. Zhang, M. Song, J. Yin, G.-A. Yu, S.H. Liu, Chem. Commun. 51, 326–329 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Zhang, Q. Liu, W. Wu, J. Peng, H. Zhang, F. Song, B. He, X. Wang, H.H.Y. Sung, M. Chen, B.S. Li, S.H. Liu, J.W.Y. Lam, B.Z. Tang, ACS Nano 13, 3618–3628 (2019)CrossRefGoogle Scholar
  38. 38.
    E. Aguiló, A.J. Moro, R. Gavara, I. Alfonso, Y. Pérez, F. Zaccaria, C.F. Guerra, M. Malfois, C. Baucells, M. Ferrer, J.C. Lima, L. Rodríguez, Inorg. Chem. 57, 1017–1028 (2018)CrossRefGoogle Scholar
  39. 39.
    J. Liang, Z. Chen, J. Yin, G.-A. Yu, S.H. Liu, Chem. Commun. 49, 3567–3569 (2013)CrossRefGoogle Scholar
  40. 40.
    J. Liang, Z. Chen, L. Xu, J. Wang, J. Yin, G.-A. Yu, Z.-N. Chen, S.H. Liu, J. Mater. Chem. C 2, 2243–2250 (2014)CrossRefGoogle Scholar
  41. 41.
    Z. Chen, D. Wu, X. Han, J. Liang, J. Yin, G.-A. Yu, S.H. Liu, Chem. Commun. 50, 11033–11035 (2014)CrossRefGoogle Scholar
  42. 42.
    L. Zhang, Z. Liu, X. Zhang, J. Chen, Y. Cao, J. Inorg. Organomet. Polym. Mater. 25, 64–72 (2015)CrossRefGoogle Scholar
  43. 43.
    L. Shi, L. Zhu, J. Guo, L. Zhang, Y. Shi, Y. Zhang, K. Hou, Y. Zheng, Y. Zhu, J. Lv, S. Liu, Z. Tang, Angew. Chem. Int. Ed. 56, 15397–15401 (2017)CrossRefGoogle Scholar
  44. 44.
    Y. Salinas, R. Martínez-Máñez, M.D. Marcos, F. Sancenón, A.M. Costero, M. Parra, S. Gil, Chem. Soc. Rev. 41, 1261–1296 (2012)CrossRefGoogle Scholar
  45. 45.
    J. Wang, J. Mei, W. Yuan, P. Lu, A. Qin, J. Sun, Y. Ma, B.Z. Tang, J. Mater. Chem. 21, 4056–4059 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
  2. 2.Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of ChemistryCentral China Normal UniversityWuhanChina

Personalised recommendations