Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Physical Properties of Sn-Doped PbSe Nanostructures as Photovoltaic Application

  • 23 Accesses

Abstract

This work presents co-precipitation synthesis of tin (Sn)-doped lead selenide (PbSe) nanostructures and their physical properties as a solar cell application. The primary characterization of the obtained samples using X-ray diffraction (XRD) patterns shows the formation of polycrystalline cubic PbSe phase and adding Sn concentration decreased and increased the crystallite size and induced strain, respectively. Morphological studies indicate the formation of flake-like PbSe nanostructures, with Sn atoms decreasing their mean diameter. Optical studies show optical band gap at the proper range for absorbing solar rays as photovoltaic applications. Solar cell devices fabricated from the Sn-doped PbSe nanostructures shows an efficiency (ƞ) of 0.40% for a sample with highest atomic percentage (at%) of Sn. This increasing in efficacy is attributed to various physical features of these structures such as induced strain on the crystalline lattice, a decrease in size, and a shift in the optical energy band gap.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J. Hou, O. Inganäs, R.H. Friend, F. Gao, Nat. Mater. 17, 119 (2018)

  2. 2.

    T. Miyasaka, Bull. Chem. Soc. Jpn. 91, 1058 (2018)

  3. 3.

    M.A. Baghchesara, M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, J. Mater. Sci. 28, 4475 (2017)

  4. 4.

    M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, F. Niknia, M.R. Mahmoudian, M. Sookhakian, Mater. Chem. Phys. 195, 187 (2017)

  5. 5.

    F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Sol. Energy Mater. Sol. Cells 154, 49 (2016)

  6. 6.

    V. Badescu, M. Paulescu, Physics of Nanostructured Solar Cells (Nova Science Publishers, Hauppauge, 2010)

  7. 7.

    G. Chen, Z. Ning, H. Agren, Nanostructured Solar Cells (MDPI AG, Basel, 2018)

  8. 8.

    P. Würfel, Physics of Solar Cells: From Principles to New Concepts (Wiley, Hoboken, 2008)

  9. 9.

    A.M. Jawaid, D.J. Asunskis, P.T. Snee, ACS Nano 5, 6465 (2011)

  10. 10.

    Y. Zhang, X. Ke, C. Chen, J. Yang, P.R.C. Kent, Phys. Rev. B 80, 024304 (2009)

  11. 11.

    Z. Chen, Z. Zhang, J. Yang et al., J. Mater. Chem. C. 6, 9861 (2018)

  12. 12.

    W. Feng, J. Song, Y. Ren et al., Physica E 102, 153 (2018)

  13. 13.

    R.L.Z. Hoye, B. Ehrler, M.L. Böhm et al., Adv. Energy Mater. 4, 1301544 (2014)

  14. 14.

    C. Gayner, R. Sharma, M.K. Das, K.K. Kar, J. Alloys Compd. 699, 679 (2017)

  15. 15.

    M. Shandalov, Y. Golan, Eur. Phys. J. 24, 13 (2003)

  16. 16.

    T.S. Shyju, S. Anandhi, R. Sivakumar, S.K. Garg, R. Gopalakrishnan, J. Cryst. Growth 353, 47 (2012)

  17. 17.

    E. Díaz-Torres, M. Ortega-López, Y. Matsumoto, J. Santoyo-Salazar, Mater. Res. Bull. 80, 96 (2016)

  18. 18.

    A. Ghorban Shiravizadeh, S.M. Elahi, S.A. Sebt, R. Yousefi, J. Appl. Phys. 123, 083102 (2018)

  19. 19.

    E.B. Hostetler, K.-J. Kim, R.P. Oleksak et al., Mater. Lett. 128, 54 (2014)

  20. 20.

    S. Hoomi, R. Yousefi, F. Jamali-Sheini et al., Funct. Mater. Lett. 08, 1550063 (2015)

  21. 21.

    Y.X. Ren, T.J. Dai, B. He, X.Z. Liu, Mater. Lett. 236, 194 (2019)

  22. 22.

    L. Han, J. Liu, N. Yu et al., Nanoscale 7, 2461 (2015)

  23. 23.

    L. Han, D.M. Balazs, A.G. Shulga, M. Abdu-Aguye, W. Ma, M.A. Loi, Adv. Electron. Mater. 4, 1700580 (2018)

  24. 24.

    H. Wei, S. Chen, X. Ren et al., CrystEngComm 14, 7408 (2012)

  25. 25.

    M.R. Khanlary, E. Salavati, Adv. Condens. Matter Phys. 2012, 4 (2012)

  26. 26.

    J. Zhang, C. Liu, J. Heo, J. Non-Cryst. Solids 431, 93 (2016)

  27. 27.

    M. Cheraghizade, F. Jamali-Sheini, P. Shabani, Mater. Sci. Semicond. Process. 90, 120 (2019)

  28. 28.

    M. Cheraghizade, F. Jamali-Sheini, P. Shabani, J. Mater. Sci. 30, 11123 (2019)

  29. 29.

    P.D.F. ICDD, Powder Diffraction File (Newtown Square, Pennsylvania, 1997)

  30. 30.

    R.D. Shannon, Acta Crystallogr. Sect. A. 32, 751 (1976)

  31. 31.

    M. Pezhman, C. Mohsen, Y. Ramin, Mater. Res. Express 6, 025051 (2019)

  32. 32.

    S. Guha, V.J. Leppert, S.H. Risbud, I. Kang, Solid State Commun. 105, 695 (1998)

  33. 33.

    F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Appl. Surf. Sci. 443, 345 (2018)

  34. 34.

    F. Jamali-Sheini, R. Yousefi, N. Ali Bakr, M. Cheraghizade, M. Sookhakian, N.M. Huang, Mater. Sci. Semicond. Process. 32, 172 (2015)

  35. 35.

    M. Cheraghizade, J. Optoelectron. Nanostruct. 4, 1 (2019)

  36. 36.

    F. Monjezi, F. Jamali-Sheini, R. Yousefi, J. Alloys Compd. 780, 626 (2019)

  37. 37.

    F. Monjezi, F. Jamali-Sheini, R. Yousefi, Sol. Energy 171, 508 (2018)

  38. 38.

    M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, Appl. Phys. A 123, 390 (2017)

  39. 39.

    F. Jamali-Sheini, M. Cheraghizade, F. Niknia, R. Yousefi, MRS Commun. 6, 421 (2016)

  40. 40.

    D. Yun, W. Feng, H. Wu, K. Yoshino, Sol. Energy Mater. Sol. Cells 93, 1208 (2009)

  41. 41.

    J. Zhang, J. Gao, C.P. Church et al., Nano Lett. 14, 6010 (2014)

  42. 42.

    Z. Zhang, Z. Chen, J. Zhang et al., Adv. Energy Mater. 7, 1601773 (2017)

Download references

Author information

Correspondence to Mohamad Moarrefi-Romeileh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiaei, I., Moarrefi-Romeileh, M. Physical Properties of Sn-Doped PbSe Nanostructures as Photovoltaic Application. J Inorg Organomet Polym 30, 986–993 (2020). https://doi.org/10.1007/s10904-019-01261-6

Download citation

Keywords

  • PbSe nanostructures
  • Sn-doped
  • Co-precipitation
  • Structural features
  • Optical properties
  • Photovoltaic behavior