Advertisement

Effect of pH on Phase, Morphology and Photocatalytic Properties of BiOBr Synthesized by Hydrothermal Method

  • Prakasit Intaphong
  • Anukorn PhuruangratEmail author
  • K. Karthik
  • Phattranit Dumrongrojthanath
  • Titipun Thongtem
  • Somchai ThongtemEmail author
Article
  • 11 Downloads

Abstract

Effect of pH on crystalline structure, morphology and visible-light-driven photocatalysis of BiOBr samples hydrothermally synthesized in solutions with the pH of 2–10 was investigated. The as-synthesized BiOBr samples investigated by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. In this research, the as-synthesized samples are pure tetragonal BiOBr phase at the pH of 2–10, and were composed of microplates, nanoplates and hierarchical micro-flowers controlled by the solution pH. The as-synthesized sample at the pH 8 was revealed the presence of Bi 4f, O 1s and Br 3d. Visible-light-driven photocatalytic properties of the BiOBr photocatalyst with different morphologies were investigated through the photodegradation of rhodamine B (RhB). The BiOBr hierarchical micro-flowers synthesized in the solution with the pH 8 show the best photocatalytic activity for wastewater treatment and the ·O2 radicals were attributed to be the primary active species for photodegradation of RhB under visible light irradiation.

Keywords

BiOBr hierarchical micro-flowers Photocatalysis Spectroscopy 

Notes

Acknowledgements

We are extremely grateful to the Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand for providing financial support through the Contact No. SCI620121S.

References

  1. 1.
    F. Li, C. Yang, Q. Li, W. Cao, T. Li, Mater. Lett. 145, 52 (2015)CrossRefGoogle Scholar
  2. 2.
    Z. Zhang, W. Wang, M. Shang, W. Yin, Catal. Commun. 11(11), 982 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Bi, L. Wu, J. Li, Z. Li, X. Wang, X. Fu, Acta Mater. 55(14), 4699 (2007)CrossRefGoogle Scholar
  4. 4.
    Z. Shao, T. Zeng, Y. He, D. Zhang, X. Pu, Chem. Eng. J. 359, 485 (2019)CrossRefGoogle Scholar
  5. 5.
    Y. Tang, X. Li, D. Zhang, X. Pu, B. Ge, Y. Huang, Mater. Res. Bull. 110, 214 (2019)CrossRefGoogle Scholar
  6. 6.
    S. Liang, T. Zhang, D. Zhang, X. Pu, X. Shao, W. Li, J. Dou, J. Am. Ceram. Soc. 101(8), 3424 (2018)CrossRefGoogle Scholar
  7. 7.
    C. Yu, W. Zhou, L. Zhu, G. Li, K. Yang, R. Jin, Appl. Catal. B 184, 1 (2016)CrossRefGoogle Scholar
  8. 8.
    D. Zeng, K. Yang, C. Yu, F. Chen, X.X. Li, Z. Wu, H. Liu, Appl. Catal. B 237, 449 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Jonjana, A. Phuruangrat, T. Thongtem, S. Thongtem, Mater. Lett. 172, 11 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Li, Z. Liang, L. Guo, N. Lei, Q. Song, Mater. Lett. 223, 93 (2018)CrossRefGoogle Scholar
  11. 11.
    M.H. Selvi, P.R. Vang, M. Ashok, Optik 173, 227 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Jonjana, A. Phuruangrat, T. Thongtem, B. Kuntalue, S. Thongtem, Mater. Lett. 218, 146 (2018)CrossRefGoogle Scholar
  13. 13.
    X. Meng, Z. Zhang, Mater. Lett. 225, 152 (2018)CrossRefGoogle Scholar
  14. 14.
    J.C. Ahern, R. Fairchild, J.S. Thomas, J. Carr, H.H. Patterson, Appl. Catal. B 179, 229 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Zhao, X. Lv, X. Wang, J. Yang, X. Yang, X. Lu, Mater. Lett. 158, 40 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Gao, J. Yang, T. Sun, Z. Zhang, D. Zhang, H. Huang, H. Lin, Y. Fang, X. Wang, Appl. Catal. B 243, 734 (2019)CrossRefGoogle Scholar
  17. 17.
    W. Fang, C. Yu, J. Mater. Res. 30(20), 3125 (2015)CrossRefGoogle Scholar
  18. 18.
    C. Yu, F. Cao, G. Li, R. Wei, J.C. Yu, R. Jin, Q. Fan, C. Wang, Sep. Purif. Technol. 120, 110 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Ji, Z. Zhang, J. Xia, J. Di, Y. Liu, R. Chen, S. Yin, S. Zhang, H. Li, Chin. Chem. Lett. 29(6), 805 (2018)CrossRefGoogle Scholar
  20. 20.
    D. Wu, S. Yue, W. Wang, T. An, G. Li, L. Ye, H.Y. Yip, P.K. Wong, Appl. Surf. Sci. 391, 516 (2017)CrossRefGoogle Scholar
  21. 21.
    H.T. Wang, M.S. Shi, H.F. Yang, N. Chang, H. Zhang, Y.P. Liu, M.C. Lu, D. Ao, D.Q. Chu, Mater. Lett. 222, 164 (2018)CrossRefGoogle Scholar
  22. 22.
    H. Feng, Z. Xu, L. Wang, Y. Yu, D. Mitchell, D. Cui, X. Xu, J. Shi, T. Sannomiya, Y. Du, W. Hao, S.X. Dou, A.C.S. Appl, Mater. Interfaces 7(50), 27592 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Gao, D. Zhang, X. Pu, H. Li, J. Li, X. Shao, K. Ding, Mater. Lett. 140, 31 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Chen, J. Zeng, J. Di, D. Zhao, M. Ji, J. Xia, H. Li, Green Energy Environ. 2(2), 124 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Lin, M. Huang, L. Long, D. Chen, J. Alloy Compd. 615, 929 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Köseoğlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Ceram. Int. 38, 3625 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Phuruangrat, D.J. Ham, S.J. Hong, S. Thongtem, J.S. Lee, J. Mater. Chem. 20, 1683 (2010)CrossRefGoogle Scholar
  28. 28.
    Q. Liang, F. Qiao, X. Cui, X. Hou, Mater. Sci. Semicond. Process. 89, 154 (2019)CrossRefGoogle Scholar
  29. 29.
    H.A.J.L. Mourão, O.F. Lopes, C. Ribeiro, V.R. Mastelaro, Mater. Sci. Semicond. Process. 30, 651 (2015)CrossRefGoogle Scholar
  30. 30.
    Powder Diffract. File, JCPDS Internat. Centre Diffract. Data, PA 19073–3273, U.S.A. (2001)Google Scholar
  31. 31.
    D. Wu, S. Yue, W. Wang, T. An, G. Li, H.Y. Yip, H. Zhao, P.K. Wong, Appl. Catal. B 192, 35 (2016)CrossRefGoogle Scholar
  32. 32.
    L. Lu, M.Y. Zhou, L. Yin, G.W. Zhou, T. Jiang, X.K. Wan, H.X. Shi, J. Mol. Catal. A 423, 379 (2016)CrossRefGoogle Scholar
  33. 33.
    O. Mehraj, N.A. Mir, B.M. Pirzada, S. Sabir, Appl. Surf. Sci. 332, 419 (2015)CrossRefGoogle Scholar
  34. 34.
    Z. Wei, R. Li, R. Wang, RSC Adv. 8(15), 7956 (2018)CrossRefGoogle Scholar
  35. 35.
    Q.L. Yuan, Y. Zhang, H.Y. Yin, Q.L. Nie, W.W. Wu, J. Exp. Nanosci. 11(5), 359 (2016)CrossRefGoogle Scholar
  36. 36.
    D. Wu, S. Yue, W. Wang, T. An, G. Li, H.Y. Yip, H. Zhao, P.K. Wong, Appl. Catal. B 192, 35 (2016)CrossRefGoogle Scholar
  37. 37.
    Y. Lv, W. Yao, R. Zong, Y. Zhu, Sci. Rep. 6, 19347 (2016)CrossRefGoogle Scholar
  38. 38.
    Aİ. Vaizoğullar, J. Electron. Mater. 47, 6751 (2018)CrossRefGoogle Scholar
  39. 39.
    P. Intaphong, A. Phuruangrat, S. Thongtem, T. Thongtem, Mater. Lett. 213, 88 (2018)CrossRefGoogle Scholar
  40. 40.
    A. Phuruangrat, P. Dumrongrojthanath, B. Kuntalue, S. Thongtem, T. Thongtem, Mater. Lett. 196, 256 (2017)CrossRefGoogle Scholar
  41. 41.
    D. Zhang, H. Liu, C. Su, H. Li, Y. Geng, Sep. Purif. Technol. 218, 1 (2019)CrossRefGoogle Scholar
  42. 42.
    D. Wang, L. Guo, Y. Zhen, L. Yue, G. Xue, F. Fu, J. Mater. Chem. A 2(30), 11716 (2014)CrossRefGoogle Scholar
  43. 43.
    J. Liu, F. Xie, R. Li, T. Li, Z. Jia, Y. Wang, Y. Wang, X. Zhang, C. Fan, Mater. Sci. Semicond. Process. 97, 1 (2019)CrossRefGoogle Scholar
  44. 44.
    T. Liu, L. Wang, X. Lu, J. Fan, X. Cai, B. Gao, R. Miao, J. Wang, Y. Lv, RSC Adv. 7(20), 12292 (2017)CrossRefGoogle Scholar
  45. 45.
    K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, J. Phys. Chem. A 113(37), 10024 (2009)CrossRefGoogle Scholar
  46. 46.
    J. Luan, P. Huang, Materials 11(4), 491 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversitySongkhlaThailand
  2. 2.Department of PhysicsBharathidasan UniversityTiruchirappalliIndia
  3. 3.Rajamangala University of Technology Lanna Chiang RaiChiang RaiThailand
  4. 4.Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  5. 5.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  6. 6.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations