Advertisement

Synthesis of Ferrocenyl Based Betti Bases by a Mannich-Type Three-Component Reaction and Investigation of Their Electrochemical Behavior

  • Reza Teimuri-MofradEmail author
  • Hassan Abbasi
  • Tahereh Vahedinia
  • Iraj Ahadzadeh
Article
  • 12 Downloads

Abstract

Ferrocenyl based Betti base derivatives, 1-[aryl(4-(4-ferrocenylbutyl)piperazin-1-yl)methyl]naphthalen-2-ol, were synthesized through one-pot three-component reaction by treatment of 1-(4-ferrocenylbutyl)piperazine, naphthalene-2-ol and benzaldehyde derivatives in ethanol as solvent in the presence of triethanolamine as catalyst under reflux condition. 1-(4-ferrocenylbutyl)piperazine was prepared by treatment of 4-chlorobutylferrocene and piperazine. Various benzaldehydes were applied to the synthesis of some new ferrocenyl Betti bases and the new ferrocenyl compounds were obtained in rather good yields (59–75%). The electrochemical performance of these new ferrocenyl based Betti bases were investigated by cyclic voltammetry in dry acetonitrile in the presence of 0.1 M LiClO4 as the electrolyte. The electrochemical studies revealed that the synthesized compounds contain a single electron quasi-reversible redox couple assigned to the ferrocenyl moiety.

Graphic Abstract

Keywords

Multicomponent reaction Betti bases Ferrocene Piperazine Electrochemical behaviour 

Notes

Acknowledgement

We gratefully acknowledge the financial support provided by the Research Council of University of Tabriz.

References

  1. 1.
    R.W. Armstrong, A.P. Combs, P.A. Tempest, S.D. Brown, T.A. Keating, Acc. Chem. Res. 29, 123 (1996)CrossRefGoogle Scholar
  2. 2.
    A. Domling, I. Ugi, Angew. Chem. Int. Ed. 39, 3168 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Strecker, Ann. Chem. Pharm. 75, 27 (1850)CrossRefGoogle Scholar
  4. 4.
    A.K. Bose, S. Pednekar, S.N. Ganguly, G. Chakraborty, M.S. Manhas, Tetrahedron Lett. 45, 8351 (2004)CrossRefGoogle Scholar
  5. 5.
    T.A. Keating, R.W. Armstrong, J. Am. Chem. Soc. 117, 7842 (1995)CrossRefGoogle Scholar
  6. 6.
    K. Kobayashi, T. Matoba, S. Irisawa, T. Matsumoto, O. Morikawa, H. Konishi, Chem. Lett. 27, 551 (1998)CrossRefGoogle Scholar
  7. 7.
    G. Zhao, T. Jiang, H. Gao, B. Han, J. Huang, D. Sun, Green Chem. 6, 75 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Knapp, Chem. Rev. 95, 1859 (1995)CrossRefGoogle Scholar
  9. 9.
    C. Cardellicchio, M.A.M. Capozzi, F. Naso, Tetrahedron Asymmetry 21, 507 (2010)CrossRefGoogle Scholar
  10. 10.
    A.Y. Shen, C.T. Tsai, C.L. Chen, Eur. J. Med. Chem. 34, 877 (1999)CrossRefGoogle Scholar
  11. 11.
    I. Szatmari, A. Hetenyi, L. Lazar, F. Fulop, J. Heterocycl. Chem. 41, 367 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Heydenreich, A. Koch, S. Klod, I. Szatmari, F. Fulop, E. Kleinpeter, Tetrahedron 62, 11081 (2006)CrossRefGoogle Scholar
  13. 13.
    C. Cardellicchio, G. Ciccarella, F. Naso, F. Perna, P. Tortorella, Tetrahedron 55, 4685 (1999)CrossRefGoogle Scholar
  14. 14.
    H.E. Smith, N.E. Cooper, J. Org. Chem. 35, 2212 (1970)CrossRefGoogle Scholar
  15. 15.
    J. Faist, W. Seebacher, R. Saf, R. Brun, M. Kaiser, R. Weis, Eur. J. Med. Chem. 47, 510 (2012)CrossRefGoogle Scholar
  16. 16.
    K. Kulig, J. Sapa, D. Maciag, B. Filipek, B. Malawska, Arch. Pharm. 340, 466 (2007)CrossRefGoogle Scholar
  17. 17.
    A. Pietrzycka, M. Stepniewski, A.M. Waszkielewicz, H. Marona, Acta Pol. Pharm. 63, 19 (2006)Google Scholar
  18. 18.
    T.J. Kealy, P.L. Pauson, Nature 168, 1039 (1951)CrossRefGoogle Scholar
  19. 19.
    J.C. Torres, R.A. Pilli, M.D. Vargas, F.A. Violante, S.J. Garden, A.C. Pinto, Tetrahedron 58, 4487 (2002)CrossRefGoogle Scholar
  20. 20.
    N. Argyropoulos, E.C. Argyropoulou, J. Organomet. Chem. 654, 117 (2002)CrossRefGoogle Scholar
  21. 21.
    R.D.A. Hudson, J. Organomet. Chem. 637–639, 47 (2001)CrossRefGoogle Scholar
  22. 22.
    P. Naguyen, P.G. Elipe, I. Manners, Chem. Rev. 99, 1515 (1999)CrossRefGoogle Scholar
  23. 23.
    I.R. Whittall, A.M. McDonagh, M.G. Humphrey, Adv. Organomet. Chem. 42, 291 (1998)CrossRefGoogle Scholar
  24. 24.
    M. Uno, P.H. Dixneuf, Angew. Chem. Int. Ed. 37, 1714 (1998)CrossRefGoogle Scholar
  25. 25.
    A. Togni, T. Hayashi (eds.), Ferrocenes: Homogeneous Catalysis, Organic Synthesis and Materials Science (VCH, New York, 1995)Google Scholar
  26. 26.
    M.F.R. Fouda, M.M. Abd-Elzaher, R.A. Abdelsamaia, A.A. Labib, Appl. Organomet. Chem. 21, 613 (2007)CrossRefGoogle Scholar
  27. 27.
    S. Top, A. Vessieres, C. Cabestaing, L. Laios, G. Leclerq, C. Prorot, G. Jaouen, J. Organomet. Chem. 637–639, 500 (2001)CrossRefGoogle Scholar
  28. 28.
    C. López, S. Pérez, X. Solans, M. Font-Bardía, A. Roig, E. Molins, P.W.N.M. Van Leeuwen, G.P.F. Van Strijdonck, Organometallics 26, 571 (2007)CrossRefGoogle Scholar
  29. 29.
    S. Pérez, C. López, A. Caubet, X. Solans, M. Font-Bardía, A. Roig, E. Molins, Organometallics 25, 596 (2006)CrossRefGoogle Scholar
  30. 30.
    A. Moyano, M. Rosol, R.M. Moreno, C. López, M.A. Maestro, Angew. Chem. Int. Ed. 44, 1865 (2005)CrossRefGoogle Scholar
  31. 31.
    R.G. Arrayas, J. Adrio, J.C. Carretero, Angew. Chem. Int. Ed. 45, 7674 (2006)CrossRefGoogle Scholar
  32. 32.
    C.E. Anderson, Y. Donde, D. Yariv, J. Christopher, L.E. Overman, J. Org. Chem. 70, 648 (2005)CrossRefGoogle Scholar
  33. 33.
    P.N. Kelly, A. Prêtre, S. Devoy, I. O’Rielly, R. Devery, A. Goel, J.F. Gallagher, A.J. Lough, P.T.M. Kenny, J. Organomet. Chem. 692, 1327 (2007)CrossRefGoogle Scholar
  34. 34.
    J.M. Lehn, Angew. Chem. Int. Ed. 29, 1304 (1990)CrossRefGoogle Scholar
  35. 35.
    J.S. Miller, A.J. Epstein, Angew. Chem. Int. Ed. 33, 385 (1994)CrossRefGoogle Scholar
  36. 36.
    R.P. Hanzlik, P. Soine, W.H. Soine, J. Med. Chem. 22, 424 (1979)CrossRefGoogle Scholar
  37. 37.
    D. Osella, C. Nervi, F. Galeotti, G. Cavigiolio, A. Vessieres, G. Jaouen, Helv. Chim. Acta 84, 3289 (2001)CrossRefGoogle Scholar
  38. 38.
    M. Inouye, M. Takase, Angew. Chem. Int. Ed. 40, 1746 (2001)CrossRefGoogle Scholar
  39. 39.
    C.J. Yu, Y.J. Wan, H. Yowonto, J. Li, C.L. Tao, M.D. James, C.L. Tan, G.F. Blackburn, T.J. Maede, J. Am. Chem. Soc. 123, 1111 (2001)CrossRefGoogle Scholar
  40. 40.
    T. Ihara, M. Nakayama, M. Murata, K. Nakano, M. Maeda, Chem. Commun. 17, 1609 (1997)CrossRefGoogle Scholar
  41. 41.
    C. Biot, L. Delhaes, L.A. Maciejewaski, M. Mortuaire, D. Camus, D. Dive, J.S. Brocard, Eur. J. Med. Chem. 35, 707 (2000)CrossRefGoogle Scholar
  42. 42.
    C. Biot, G. Glorian, L.A. Maciejewaski, J.S. Brocard, J. Med. Chem. 40, 3715 (1997)CrossRefGoogle Scholar
  43. 43.
    C. Biot, L. Delhaes, M. N’Diaye, L.A. Maciejewaski, D. Camus, D. Dive, J.S. Brocard, Bioorg. Med. Chem. 7, 2843 (1999)CrossRefGoogle Scholar
  44. 44.
    B. Cottineau, P. Toto, C. Marot, A. Pipaud, J. Chenault, Bioorg. Med. Chem. Lett. 12, 2105 (2002)CrossRefGoogle Scholar
  45. 45.
    H. Yu, L. Shao, J. Fang, J. Organomet. Chem. 692, 991 (2007)CrossRefGoogle Scholar
  46. 46.
    M. Zora, M. Görmen, J. Organomet. Chem. 692, 5026 (2007)CrossRefGoogle Scholar
  47. 47.
    K.D. Safa, H. Abbasi, R. Teimuri-Mofrad, F.A. Charandabi, Aust. J. Chem. 67, 784 (2014)CrossRefGoogle Scholar
  48. 48.
    R. Teimuri-Mofrad, F. Mirzaei, H. Abbasi, K.D. Safa, Comptes Rendus Chim. 20, 197 (2017)CrossRefGoogle Scholar
  49. 49.
    R. Teimuri-Mofrad, K.D. Safa, K. Rahimpour, J. Organometal. Chem. 758, 36 (2014)CrossRefGoogle Scholar
  50. 50.
    R. Teimuri-Mofrad, H. Abbasi, K.D. Safa, B. Tahmasebi, Arkivoc 4, 371 (2016)Google Scholar
  51. 51.
    R. Teimuri-Mofrad, K. Rahimpour, R. Ghadari, J. Organomet. Chem. 811, 14 (2016)CrossRefGoogle Scholar
  52. 52.
    R. Teimuri-Mofrad, K. Rahimpour, R. Ghadari, J. Organomet. Chem. 846, 397 (2017)CrossRefGoogle Scholar
  53. 53.
    R. Teimuri-Mofrad, K. Rahimpour, R. Ghadari, S. Ahmadi-Kandjani, J. Mol. Liq. 244, 322 (2017)CrossRefGoogle Scholar
  54. 54.
    R. Teimuri-Mofrad, K. Rahimpour, A.R. Vaez, Appl. Organomet. Chem. 32, e4031 (2018)CrossRefGoogle Scholar
  55. 55.
    R. Teimuri-Mofrad, K. Rahimpour, A. Poursadegh, Mater. Chem. Phys. 200, 384 (2017)CrossRefGoogle Scholar
  56. 56.
    R. Teimuri-Mofrad, A. Shahrisa, M. Gholamhosseini-Nazari, N. Arsalani, Res. Chem. Intermed. 42, 3425 (2016)CrossRefGoogle Scholar
  57. 57.
    A. Shahrisa, R. Teimuri-Mofrad, M. Gholamhosseini-Nazari, Mol. Divers. 19, 87 (2015)CrossRefGoogle Scholar
  58. 58.
    A. Shahrisa, R. Teimuri-Mofrad, M. Gholamhosseini-Nazari, Synlett 26, 1031 (2015)CrossRefGoogle Scholar
  59. 59.
    R. Teimuri-Mofrad, M. Gholamhosseini-Nazari, S. Esmati, A. Shahrisa, Res. Chem. Intermed. 43, 6845 (2017)CrossRefGoogle Scholar
  60. 60.
    R. Teimuri-Mofrad, M. Gholamhosseini-Nazari, E. Payami, S. Esmati, Appl. Organomet. Chem. 32, e3955 (2018)CrossRefGoogle Scholar
  61. 61.
    R. Teimuri-Mofrad, M. Gholamhosseini-Nazari, S. Esmati, A. Shahrisa, J. Chem. Sci. 129, 1449 (2017)CrossRefGoogle Scholar
  62. 62.
    F. Janati, M.M. Heravi, A.M. Shokraie, Synth. React. Inorg. Metal Org. Chem. 45, 1 (2015)CrossRefGoogle Scholar
  63. 63.
    Z.P. Zhang, J.M. Wen, J.H. Li, W.X. Hu, J. Chem. Res. 33, 162 (2009)CrossRefGoogle Scholar
  64. 64.
    I. Szatmari, F. Fulop, Curr. Org. Chem. 1, 155 (2004)Google Scholar
  65. 65.
    J. Mou, G. Gao, C. Chen, J. Liu, J. Gao, Y. Liu, D. Pei, RSC Adv. 7, 13868 (2017)CrossRefGoogle Scholar
  66. 66.
    M. Kidwai, R. Chauhan, Asian. J. Org. Chem. 2, 395 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Organic and Biochemistry, Faculty of ChemistryUniversity of TabrizTabrizIran
  2. 2.Department of Physical Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations