Advertisement

Modeling, Thermodynamic Study and Sorption Mechanism of Cadmium Ions onto Isopropyl Alcohol Mediated Tin Dioxide Nanoparticles

  • Sirajul HaqEmail author
  • Wajid Rehman
  • Muhammad WaseemEmail author
  • Mahfooz-ur Rehman
  • Khizar Hussain Shah
Article
  • 6 Downloads

Abstract

The microporous tin dioxide nanoparticles (SnO2 NPs) were synthesized by sol–gel method using isopropyl alcohol exhibit high surface area (128 m2/g). The crystal phase and geometry of SnO2 NPs was studied by X-ray diffractometer and the calculated crystallite size is 15.78 nm. The percentage composition and purity was confirmed by energy dispersive X-ray analysis. The morphology was examined through scanning electron microscopy which confirm the presence of the grains, cluster and agglomerated particles in the sample. The space groups were assigned to different vibrational modes of the SnO2 NPs on the basis of Raman spectroscopy. The surface functional moieties were identified by Fourier transform infrared spectroscopy. The batch method was used for the sorption of cadmium (Cd2+) ions from aqueous solution at pH 5. The Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D–R) models were applied to the adsorption data to determine the nature adsorption process, binding energy and maximum sorption capacity of the adsorbent. A set of equations were used to study the thermodynamic feasibility and endothermic nature of the adsorption process while the ions exchange mechanism was found to be 1:1.

Keywords

Adsorption Langmuir Freundlich Temkin Dubinin–Radushkevich 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M.S. Rahman, K.V. Sathasivam, Biomed. Res. Int. 2015, 126298 (2015).  https://doi.org/10.1155/2015/126298 Google Scholar
  2. 2.
    L. Xia, X. Xu, W. Zhu, Q. Huang, W. Chen, Int. J. Mol. Sci. 16, 15670 (2015)CrossRefGoogle Scholar
  3. 3.
    M.K. Uddin, Chem. Eng. J. 308, 438 (2017)CrossRefGoogle Scholar
  4. 4.
    F. Verpoort, W. Sang, Q. Zhang, Z. Fan, M. Li, D. Niu, Environ. Sci. Pollut. Res. 25, 8330 (2018)CrossRefGoogle Scholar
  5. 5.
    V. Jayakumar, S. Govindaradjane, M. Rajasimman, Model. Earth Syst. Environ. (2018).  https://doi.org/10.1007/s40808-018-0566-2 Google Scholar
  6. 6.
    T.A. Elbana, H.M. Selim, N. Akrami, A. Newman, S.M. Shaheen, Geoderma 324, 80 (2018)CrossRefGoogle Scholar
  7. 7.
    V.K. Gupta, A. Nayak, Chem. Eng. J. 180, 81 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Kamaraj, R. Vennila, M. Arthanareeswari, S. Devikala, World J. Pharm. Pharm. Sci. 3, 382 (2014)Google Scholar
  9. 9.
    S. de Monredon, A. Cellot, F. Ribot, C. Sanchez, L. Armelao, L. Gueneau, L. Delattre, J. Mater. Chem. 12, 2396 (2002)CrossRefGoogle Scholar
  10. 10.
    Y. Masuda, T. Ohji, K. Kato, J. Am. Ceram. Soc. 93, 2140 (2010)CrossRefGoogle Scholar
  11. 11.
    A.D. Bhagwat, S.S. Sawant, B.G. Ankamwar, C.M. Chandrashekhar, J. Nano Electron. Phys. 7, 7 (2015)Google Scholar
  12. 12.
    E. Drzymała, G. Gruzeł, J. Depciuch, A. Budziak, A. Kowal, M. Parlinska-Wojtan, J. Phys. Chem. Solids 107, 100 (2017)CrossRefGoogle Scholar
  13. 13.
    B. Cheng, J.M. Russell, W. Shi, L. Zhang, E.T. Samulski, J. Am. Chem. Soc. 126, 5972 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Ristić, M. Ivanda, S. Popović, S. Musić, J. Non-Cryst. Solids 303, 270 (2002)CrossRefGoogle Scholar
  15. 15.
    S. Haq, W. Rehman, M. Waseem, R. Javed, Mahfooz-ur-Rehman, M. Shahid, Appl. Nanosci. 8, 11 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Lin, C. Wu, Surf. Coat. Technol. 88, 239 (1996)CrossRefGoogle Scholar
  17. 17.
    D.M. Veneu, C.L. Schneider, M.B. de Mello Monte, O.G.C. Cunha, L. Yokoyama, Environ. Technol. (United Kingdom) 39, 1670 (2018)Google Scholar
  18. 18.
    S. Haq, W. Rehman, M. Waseem, M. Shahid, Mahfooz-ur-Rehman, K.H. Shah, M. Nawaz, Mater. Res. Express 3, 105019 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Saraeian, A. Hadi, F. Raji, A. Ghassemi, M. Johnson, J. Environ. Chem. Eng. 6, 3322 (2018)CrossRefGoogle Scholar
  20. 20.
    J.N. Ghogomu, T.D. Noufame, M.J. Ketcha, N.J. Ndi, Br. J. Appl. Sci. Technol. 3, 942 (2013)CrossRefGoogle Scholar
  21. 21.
    E. Inam, U.J. Etim, E.G. Akpabio, S.A. Umoren, J. Taibah Univ. Sci. 11(1), 173–185 (2016)CrossRefGoogle Scholar
  22. 22.
    K.H. Shah, S. Ali, F. Shah, M. Waseem, B. Ismail, Mater. Res. Express 5, 96102 (2018)CrossRefGoogle Scholar
  23. 23.
    A. Agrawal, K.K. Sahu, J. Hazard. Mater. 137, 915 (2006)CrossRefGoogle Scholar
  24. 24.
    E. Kokkinos, K. Soukakos, M. Kostoglou, M. Mitrakas, Environ. Sci. Pollut. Res. 25, 12263–12273 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Haq, W. Rehman, M. Waseem, J. Inorg. Organomet. Polym. Mater. 29, 651 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Mustafa, M. Waseem, A. Naeem, K.H. Shah, T. Ahmad, S.Y. Hussain, Chem. Eng. J. 157, 18 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Azad Jammu and KashmirMuzaffarabadPakistan
  2. 2.Department of ChemistryHazara University MansehraMansehraPakistan
  3. 3.Department of ChemistryCOMSATS University Islamabad (CUI)IslamabadPakistan
  4. 4.Department of ChemistryCOMSATS University IslamabadAbbottabadPakistan

Personalised recommendations