Advertisement

Facile Synthesis of ZnS Nanoparticles for Detection of O-nitrophenol

  • Y. Z. SongEmail author
  • B. L. Dai
  • L. L. Zhang
  • C. H. Lv
  • Yong Ye
  • Jimin Xie
Article
  • 8 Downloads

Abstract

The ZnS nanoparticles were synthesized by hydrothermal method using thioacetamide and zinc chloride as precursors, and characterized by X-ray diffractometer, scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometer and AC impedance spectroscopy. Electrochemical behavior of O-nitrophenol at nano ZnS modified glassy carbon electrode was investigated, and the reduction mechanism was discussed. Determination of artificial samples using the standard addition method was proposed, and recoveries were in the range from 96.3 to 102.0% with RSD of 1.3–2.0% (n = 6).

Keywords

ZnS nano particles O-nitrophenol Electrochemical behavior 

Notes

Acknowledgements

This research was supported by the National Science Foundation of China (Grant No. 20872046/B020901), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20160430), Opened Foundation of Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials (Grant No. JSKC17009).

References

  1. 1.
    WHO, Guidelines for Drinking Water Quality, vol. 1 (World Health Organization, Geneva, 1984)Google Scholar
  2. 2.
    S.C. Moldoveanu, M. Kiser, Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke. J. Chromatogr. A 1141, 90–97 (2007)Google Scholar
  3. 3.
    S.-J. Li, C. Qian, K. Wang, B.-Y. Hua, F.-B. Wang, Z.-H. Sheng et al., Application of thermally reduced graphene oxide modified electrode in simultaneous determination of dihydroxybenzene isomers. Sens. Actuators B 174, 441–448 (2012)Google Scholar
  4. 4.
    M.F. Pistonesi, M.S. Di Nezio, M.E. Centurión, M.E. Palomeque, A.G. Lista, B.S.F. Band, Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 69, 1265–1268 (2006)Google Scholar
  5. 5.
    R. Belloli, B. Barletta, E. Bolzacchini, S. Meinardi, M. Orlandi, B. Rindone, Determination of toxic nitrophenols in the atmosphere by high-performance liquid chromatography. J. Chromatogr. A 846, 277–281 (1999)Google Scholar
  6. 6.
    A. Khan, A.A.P. Khan, M.M. Rahman, A.M. Asiri, Inamuddin, K.A. Alamry, S.A. Hameed, Preparation and characterization of PANI@G/CWO nanocomposite for enhanced 2-nitrophenol sensing. Appl. Surf. Sci. 433, 696–704 (2018)Google Scholar
  7. 7.
    G. Gerent, G.A. Spinelli, Magnetite-platinum nanoparticles-modified glassy carbon electrode as electrochemical detector for nitrophenol isomers. J. Hazard. Mater. 330, 105–115 (2017)Google Scholar
  8. 8.
    M.K. Alam, M.M. Rahman, M. Abbas, S.R. Torati, A.M. Asiri, D. Kim, C.G. Kim, Ultra-sensitive 2-nitrophenol detection based on reduced graphene oxide/ZnO nanocomposites. J. Electroanal. Chem. 788, 66–73 (2017)Google Scholar
  9. 9.
    Y.D.A. Kumar, G. Vellaichamy, M. Frank, G. Rupali, S.P. Kumar, Metal@MOF materials in electroanalysis: silver-enhanced oxidation reactivity towards nitrophenols adsorbed into a zinc metal organic framework-Ag@MOF-5(Zn). Electrochim. Acta 219, 482–491 (2016)Google Scholar
  10. 10.
    K. Matras-Postołek, A. Zaba, E.M. Nowak, P. Dabczynski, J. Rysz, J. Sanetra, Formation and characterization of one-dimensional ZnS nanowires for ZnS/P3HT hybrid polymer solar cells with improved efficiency. Appl. Surf. Sci. 451, 180–190 (2018)Google Scholar
  11. 11.
    X. Du, H. Zhao, Y. Lu, Z. Zhang, A. Kulkac, K. Swierczekc, Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries. Electrochim. Acta 228, 100–106 (2017)Google Scholar
  12. 12.
    B. Wei, H. Liang, R. Wang, D. Zhang, Z. Qi, Z. Wang, One-step synthesis of graphitic-C3N4/ZnS composites for enhanced supercapacitor performance. J. Energy Chem. 27, 472–477 (2018)Google Scholar
  13. 13.
    S. Thangavel, K. Krishnamoorthy, S. Kim, G. Venugopal, Designing ZnS decorated reduced graphene-oxide nanohybrid via microwave route and their application in photocatalysis. J. Alloys Compd. 683, 456–462 (2016)Google Scholar
  14. 14.
    Z. Han, X. Zheng, F. Hu, F. Qu, A. Umar, X. Wu, Facile synthesis of hollow ZnS nanospheres for environmental remediation. Mater. Lett. 160, 271–274 (2015)Google Scholar
  15. 15.
    J.-R. Li, J.-F. Huang, L.-Y. Cao, J.-P. Wu, H.-Y. He, Synthesis and kinetics research of ZnS nanoparticles prepared by sonochemical process. Mater. Sci. Technol. 26, 1269–1272 (2010)Google Scholar
  16. 16.
    T.T.Q. Hoa, T.D. Canh, N.N. Long, Preparation of ZnS nanoparticles by hydrothermal method. J. Phys: Conf. Ser. 187, 012081 (2009)Google Scholar
  17. 17.
    K. Ashwini, C. Pandurangappa, Solvothermal synthesis, characterization and photoluminescence studies of ZnS: Eu nanocrystals. Opt. Mater. 37, 537–542 (2014)Google Scholar
  18. 18.
    G. Lee, J.J. Wu, Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—a review. Powder Technol. 318, 8–22 (2017)Google Scholar
  19. 19.
    Z. Gang, Z. Pei, T. Niu, L. Lin, J. Deng, J. Yong, Z. Jiao, X. Sun, Synthesis and characterization of ZnS nanotubes assisted by ethylene glycol quick view other sources. Mater. Lett. 189, 263–266 (2017)Google Scholar
  20. 20.
    X. Xu, Self-encapsulated core-shell ZnS microspheres. Controlled synthesis, growth mechanism and photoluminescence properties. J. Nanosci. Nanotechnol. 14(4), 3277–3280 (2014)Google Scholar
  21. 21.
    D. Fatemeh, M. Maryam, R.L.E. Mohammad, H. Zohreh, Synthesis of spherical ZnS based nanocrystals using thioglycolic assisted hydrothermal method. Cryst. Eng. Comm. 14(21), 338–7344 (2012)Google Scholar
  22. 22.
    M. Saeed Akhtar, S. Riaz, S. Naseem, Synthesis of ZnS nanoparticles by chemical bath deposition. Mater. Today: Proc. 2, 5691–5694 (2015)Google Scholar
  23. 23.
    C. Yao, H. Sun, H.-F. Fu, Z.-C. Tan, Sensitive simultaneous determination of nitrophenol isomers at poly (p-aminobenzene sulfonic acid) film modified graphite electrode. Electrochim. Acta 156, 163–170 (2015)Google Scholar
  24. 24.
    L.Q. Luo, X.L. Zou, Y.P. Ding, Q.S. Wu, Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sens. Actuators B 135, 61–65 (2008)Google Scholar
  25. 25.
    Z. Liu, X. Ma, H. Zhang, W. Lu, H. Ma, S. Hou, Simultaneous determination of nitro-phenol isomers based on β-cyclodextrin functionalized reduced graphene oxide. Electroanalysis 24, 1178–1185 (2012)Google Scholar
  26. 26.
    K. Nejati, K. Asadpour-Zeynali, Z. Rezvani, R. Peyghami, Determination of 2-nitro-phenol by electrochemical synthesized Mg/Fe layered double hydroxide sensor. Int. J. Electrochem. Sci. 9, 5222–5234 (2014)Google Scholar
  27. 27.
    H. Zhang, Z.H. Wang, S.P. Zhou, Simultaneous determination of nitrophenol isomers at the single-wall carbon nanotube compound conducting polymer film modified electrode. Sci. China B 48, 177–182 (2005)Google Scholar
  28. 28.
    X. Xu, Z. Liu, X. Zhang, S. Duan, S. Xu, C. Zhou, β-Cyclodextrin functionalized meso-poroussilica for electrochemical selective sensor:simultaneousdetermination of ni-trophenol isomers. Electrochim. Acta 58, 142–149 (2011)Google Scholar
  29. 29.
    T. Zhang, Q. Lang, D. Yang, L. Li, L. Zeng, C. Zheng, T. Li, M. Wei, A. Liu, Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochim. Acta 106, 127–134 (2013)Google Scholar
  30. 30.
    L. Chu, L. Han, X. Zhang, Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J. Appl. Electrochem. 41, 687–694 (2011)Google Scholar
  31. 31.
    M.K. Alam, M.M. Rahman, M. Abbas, S.R. Torati, A.M. Asiri, D. Kim, C. Kim, Ultra-sensitive 2-nitrophenol detection based on reduced grapheme oxide/ZnO nanocomposites. J. Electroanal. Chem. 788, 66–73 (2017)Google Scholar
  32. 32.
    P. Deng, Z. Xu, J. Li, Simultaneous voltammetric determination of 2-nitrophenol and 4-nitrophenol based on an acetylene black paste electrode modified with a graphene-chitosan composite. Microchim. Acta 181, 1077–1084 (2014)Google Scholar
  33. 33.
    R.S. Nicholson, J.M. Wilson, M.L. Olmstead, Polarographic theory for an ECE mechanism application to reduction of p-nitrosophenol. Anal. Chem. 38, 542 (1966)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Y. Z. Song
    • 1
    Email author
  • B. L. Dai
    • 1
  • L. L. Zhang
    • 1
  • C. H. Lv
    • 1
  • Yong Ye
    • 2
  • Jimin Xie
    • 3
  1. 1.Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical EngineeringHuaiyin Normal UniversityHuai’anPeople’s Republic of China
  2. 2.School of ChemistryHubei UniversityWuhanPeople’s Republic of China
  3. 3.School of Chemistry & Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations