TiO2 Nanostructures (TiO2-NSs): Synthesis, Characterization and Evaluation of Their Toxicity in the Swiss albino Mouse

  • Ingrid Fernández
  • Angel J. Ceballos
  • H. Bolaños
  • J. E. Rodríguez-PáezEmail author


In this work, TiO2 nanostructures (TiO2-NSs) were obtained at low temperature, using the sol–gel method, and their toxicity was evaluated in Swiss albino mice. For the synthesis, ethanol solvent was used and the concentration of the surfactant, cetyltrimethyl ammonium bromide (CTAB), was modified to determine its effect on the characteristics of the final product. Characterization of the synthesized TiO2-NSs was carried out using IR spectroscopy, X-ray diffraction (XRD), transmission (TEM) and scanning electron microscopy (SEM). The solids obtained, without heat treatment, showed an amorphous structure. When these were treated at 450 °C, they crystallized in an anatase type phase, independent of CTAB concentration, with a crystallite size of 3–5 nm. The particles showed a spheroidal or needle-like shape, with a nanometric size (100 nm), and formed spheroidal agglomerates (between 1 and 5 μm) or mesoporous structures, for the 6 mm concentration of CTAB. Additionally, the toxicity of the NSs synthesized was determined, using 3 mm CTAB and treated at 450 °C, giving doses of 5 mg/kg, 50 mg/kg, 300 mg/kg of TiO2-NSs to mice prepared for this test. The results of the analysis of the liver biopsies of the animals, on which euthanasia was practiced, showed that the best effect was the 300 mg/kg dose, where alterations in the mitochondria were observed, with distortion in their normal structure (fragmentation) and strong involvement of its outer membrane.


TiO2-NSs Synthesis Surfactant Mechanism of formation of the particles Nanotoxicity 



This work was carried out under project ID 3977, funded by the vice-Rectorate for Research at the University of Cauca (VRI Universidad del Cauca), Colombia. We are especially grateful to Colin McLachlan for suggestions relating to the English text.


  1. 1.
    F.J. Heiligtag, M. Niederberger, Mater. Today 16, 262 (2013)CrossRefGoogle Scholar
  2. 2.
    I. Khan, K. Saeed, I. Khan, Arab. J. Chem. (2017). Google Scholar
  3. 3.
    R. Krahne, G. Morello, A. Figuerola, C. George, S. Deka, L. Manna, Phys. Rep. 501, 75 (2011)CrossRefGoogle Scholar
  4. 4.
    C. Buzea, I.I. Pacheco, K. Robbie, Biointerphases 2, MR17 (2007)CrossRefGoogle Scholar
  5. 5.
    G.L. Nealon, B. Donnio, R. Greget, J.P. Kappler, E. Terazzi, J.L. Gallani, Nanoscale 4, 5244 (2012)CrossRefGoogle Scholar
  6. 6.
    M. De, P.S. Ghosh, V.M. Rotello, Adv. Mater. 20, 4225 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, Clin. Pharmacol. Ther. 83, 761 (2008)CrossRefGoogle Scholar
  8. 8.
    S.K. Verma, A.K. Tiwari, Mater. Today 2, 3638 (2015)Google Scholar
  9. 9.
    R. Prasad, A. Bhattacharyya, Q.D. Nguyen, Front. Microbiol. 8, 1014 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  11. 11.
    S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011)CrossRefGoogle Scholar
  12. 12.
    J.F. Banfield, D.R. Veblen, Am. Miner. 77, 545 (1992)Google Scholar
  13. 13.
    M. Kaneko, I. Okura (eds.), Photocatalysis: science and technology (Kodansha-Spring Verlag, New York, 2002)Google Scholar
  14. 14.
    M. Anpo, P.V. Kamat (eds.), Environmentally benign photocatalysts (Springer Science + Business Media, New York, 2010)Google Scholar
  15. 15.
    E. Topoglidis, A.E. Cass, G. Gilardi, S. Sadeghi, N. Beaumont, J.R. Durrant, Anal. Chem. 70, 5111 (1998)CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, A. Kladi, X.E. Verykios, J. Phys. Chem. 98, 6804 (1994)CrossRefGoogle Scholar
  17. 17.
    M.M. Shubert, V. Plzak, J. Garche, R.J. Behm, Catal. Lett. 76, 143 (2001)CrossRefGoogle Scholar
  18. 18.
    J. Geserick, T. Froeschl, N. Huesing, G. Kucerova, M. Makosch, T. Diemant, S. Ecckle, R.J. Behm, Dalton Trans. 40, 3269 (2011)CrossRefGoogle Scholar
  19. 19.
    W.P. Hsu, R. Yu, E. Matijevic, J. Colloid Interface Sci. 156, 56 (1993)CrossRefGoogle Scholar
  20. 20.
    A. Mills, H.R. Davis, D. Worsley, Chem. Soc. Rev. 22, 417 (1993)CrossRefGoogle Scholar
  21. 21.
    P.-C. Maness, S. Smolinski, D.M. Blake, Zh Huang, E.J. Wolfrum, W.A. Jacoby, Appl. Environ. Microbiol. 65, 4094 (1999)Google Scholar
  22. 22.
    Y. Paz, Z. Luo, L. Rabenberg, A. Heller, J. Mater. Res. 10, 2842 (1995)CrossRefGoogle Scholar
  23. 23.
    Z.F. Yin, L. Wu, H.G. Yang, Y.H. Su, Phys. Chem. Chem. Phys. 15, 4844 (2013)CrossRefGoogle Scholar
  24. 24.
    D.B. Warheit, E.M. Donner, Food Chem. Toxicol. 85, 138 (2015)CrossRefGoogle Scholar
  25. 25.
    X.X. Chen, B. Cheng, Y.X. Yang, A. Cao, J.H. Liu, L.J. Du, Y. Liu, Y. Zhao, H. Wang, Small 9, 1765 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz, Environ. Sci. Technol. 46, 2242 (2012)CrossRefGoogle Scholar
  27. 27.
    S.G. Kumar, K.S.R.K. Rao, Nanoscale 6, 11574 (2014)CrossRefGoogle Scholar
  28. 28.
    D. Fattakhova-Rohlfing, A. Zaleska, T. Bein, Chem. Rev. 114, 9487 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Cargnello, ThR Gordon, ChB Murray, Chem. Rev. 114, 9319 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Yin, A.P. Alivisatos, Nature 437, 664 (2005)CrossRefGoogle Scholar
  31. 31.
    C.J. Brinker, G.W. Scherer (eds.), Sol-gel science: The physics and chemistry of sol-gel processing (Academic Press, Boston, 1990)Google Scholar
  32. 32.
    J.P. Jolivet, Metal oxide chemistry and synthesis (Wiley, West Sussex, England, 2000)Google Scholar
  33. 33.
    A.C. Pierre, Introduction to sol-gel processing (Springer Sciences + Business, New York, 1998)CrossRefGoogle Scholar
  34. 34.
    G. Oberdorster, E. Oberdorster, J. Oberdorster, Environ. Health Perspect. 113, 823 (2005)CrossRefGoogle Scholar
  35. 35.
    H. Shi, R. Magaye, V. Canstranove, J. Zhao, Part. Fibre Toxicol 10, 15 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Shakeel, F. Jabeen, S. Shabbir, M.S. Asghar, M.S. Khan, A.S. Chaudhry, Biol. Trace Elem. Res. 172, 1 (2016)CrossRefGoogle Scholar
  37. 37.
    American Conference of Governmental Industrial Hygienists (ACGIN): Threshold limit values and biological exposure índices for 1992–1993. Cincinnati- Ohio: American conference of Governmental Industrial Hygienists: 1992Google Scholar
  38. 38.
    F. Grande, P. Tucci, Mini. Rev. Med. Chem. 16, 762 (2016)CrossRefGoogle Scholar
  39. 39.
    J. Hou, L. Wang, C. Wang, S. Zhang, H. Liu, S. Li, X. Wang, J. Environ. Sci. 75, 40 (2019)CrossRefGoogle Scholar
  40. 40.
    J. Cur, H. Liu, Y. Ze, Z. Zhang, Y. Hu, Z. Cheng, J. Cheng, R. Hu, G. Ga, L. Wang, M. Tang, F. Hong, Toxicol. Sci. 128, 171 (2012)CrossRefGoogle Scholar
  41. 41.
    L. Ma, J. Zhao, J. Wang, J. Liu, Y. Duan, H. Liu, N. Li, J. Yan, J. Ruan, H. Wang, F. Hong, Nanoscale Res. Lett. 4, 1275 (2009)CrossRefGoogle Scholar
  42. 42.
    J. Wang, G. Zhou, C. Chen, H. Yu, T. Wang, Y. Ma et al., Toxicol. Lett. 168, 176 (2007)CrossRefGoogle Scholar
  43. 43.
    A. Morgan, M.A. Ibrahim, M.K. Galal, H.A. Ogaly, R.M. Abd-Elsalam, Biomed. Pharmacother. 103, 553 (2018)CrossRefGoogle Scholar
  44. 44.
    S.A.A. Azim, H.A. Darwish, M.Z. Rizk, S.A. Ali, M.O. Kadry, Exp. Toxicol. Pathol. 67, 305 (2015)CrossRefGoogle Scholar
  45. 45.
    M.Z. Rizk, S.A. Ali, M.A. Hamed, N.S. El-Rigal, H.F. Aly, H.H. Salh, Biomed. Pharmacother. 90, 466 (2017)CrossRefGoogle Scholar
  46. 46.
    R. Meena, R. Paulraj, Toxicol. Environ. Chem. 94, 146 (2012)CrossRefGoogle Scholar
  47. 47.
    D. Vasantharaja, V. Ramalingam, G.A. Reddy, Nanomed. J. 2, 46 (2015)Google Scholar
  48. 48.
    J. Hong, Y.Q. Zhang, Nanotechnology 27, 112001 (2016)CrossRefGoogle Scholar
  49. 49.
    Y. Ochoa, Y. Ortegón, J.E. Rodríguez Páez, Rev. Fac. Ing. Univ. Antioq. 52, 29 (2010)Google Scholar
  50. 50.
    I.E. Fernández, J.E. Rodríguez-Páez, J. Alloys Compd. 780, 756 (2019)CrossRefGoogle Scholar
  51. 51.
    OECD. Acute oral toxicity—fixed dose procedure. 2001Google Scholar
  52. 52.
    R. Liu, L. Yin, Y. Pu, G. Liang, J. Zhang, Y. Su, Z. Xiao, B. Ye, Prog. Nat. Sci. Mater. Int. 19, 573 (2009)CrossRefGoogle Scholar
  53. 53.
    S. Gui, Z. Zhang, L. Zheng, Y. Cui, X. Liu, N. Li, X. Sanga, Q. Suna, G. Gaoa, Z. Chenga, J. Chenga, L. Wanga, M. Tangc, F. Hong, Hazard. Mater. 195, 365 (2011)CrossRefGoogle Scholar
  54. 54.
    J.J. Bozzola, L.D. Russel, Electron microscopy: principles and techniques for biologists, 2nd edn. (Jones and Bartlett Publishers, Toronto, 1992), p. 450Google Scholar
  55. 55.
    L. Jiang, S. Li, W. Yu, J. Wang, Q. Sun, Z. Li, Colloids Surf. A 488, 20 (2016)CrossRefGoogle Scholar
  56. 56.
    J.L. Salager, Surfactantes en solución acuosa (Ministerio de ciencia y tecnologia, Merida venezuela, 1993), pp. 1–25Google Scholar
  57. 57.
    L.G. Wade, Quimica organica, 5th edn. (Pearson prentice hall, Madrid, 2002)Google Scholar
  58. 58.
    F.M. Menger, Acc. Chem. Res. 12, 111 (1979)CrossRefGoogle Scholar
  59. 59.
    C. Su, B.Y. Hong, C.M. Tseng, Catal. Today 96, 119 (2004)CrossRefGoogle Scholar
  60. 60.
    H.H. Beacham, Advances in chemistry (American Chemical Society, Washington, 1959), pp. 282–289Google Scholar
  61. 61.
    M.A. Vargas, J.E. Rodríguez-Páez, J. Non-Cryst, Solids 459, 192 (2017)Google Scholar
  62. 62.
    L. Tellez, F. Rubio, R. Peña Alonso, J. Rubio, Bol. Soc. Esp. Ceram. V 43, 883 (2004)CrossRefGoogle Scholar
  63. 63.
    M. Ocaña, V. Formés, J.V. García Ramos, C.J. Serna, J. Solid State Chem. 75, 364 (1988)CrossRefGoogle Scholar
  64. 64.
    M. Andrés-Vérges, M. Martínez-Gallego, J. Mater. Sci. 27, 3756 (1992)CrossRefGoogle Scholar
  65. 65.
    A.M. Guzmán, A.M. Fernández, Y. Franco, J.H. Bautista, J.E. Rodríguez-Páez, Rev. Acad. Colom. Cienc. 31, 530 (2007)Google Scholar
  66. 66.
    S. Doeuff, M. Henry, C. Sánchez, J. Livage, J. Non-Cryst. Solid 89, 206 (1987)CrossRefGoogle Scholar
  67. 67.
    H. Miyata, Y. Fukushima, Y. Kanno, S. Hayase, S. Hara, M. Watanabe, S. Kitamura, M. Takahashi, K. Kuroda, J. Mater. Chem. C3, 3869 (2015)Google Scholar
  68. 68.
    P. Dumas, N. Ea, J.C. Niepce, G. Watalle, J. Solid State Chem. 27, 317 (1979)CrossRefGoogle Scholar
  69. 69.
    J.P. Auffredic, D. Louër, React. Solids 4, 105 (1987)CrossRefGoogle Scholar
  70. 70.
    J. Jia, B. Yan, Hepatic injuries induced by engineered nanomaterials, Chapter 12, in Bioactivity of engineered nanoparticles (nanomedicine and nanotoxicology), ed. by Bing Yan, Hongyu Zhou, J.L. Gardea-Torresdey (Springer, Singapore, 2017), pp. 321–338CrossRefGoogle Scholar
  71. 71.
    J. Jia, F. Li, H. Zhou, Y. Bai, S. Liu, Y. Jiang, G. Jiang, B. Yan, Environ. Sci. Technol. 51, 9334 (2017)CrossRefGoogle Scholar
  72. 72.
    A. Rezaei, A. Farzinpour, A. Vaziry, A. Jalili, Biol. Trace Elem. Res. 185, 475 (2018)CrossRefGoogle Scholar
  73. 73.
    L. Wang, L. Yan, J. Liu, C. Chen, Y. Zhao, Anal. Chem. 90, 589 (2018)CrossRefGoogle Scholar
  74. 74.
    M.A. Vargas, J.E. Rodríguez-Páez, J. Clust. Sci. 30, 379 (2019)CrossRefGoogle Scholar
  75. 75.
    V.L. Prasanna, R. Vijayaraghavan, Langmuir 31, 9155 (2015)CrossRefGoogle Scholar
  76. 76.
    D.T. Jayaram, S. Runa, M.L. Kemp, C.K. Payne, Nanoscale 9, 7595 (2017)CrossRefGoogle Scholar
  77. 77.
    S.K. Verma, E. Jha, P.K. Panda, J.K. Das, A. Thirumurugan, M. Suar, S.K.S. Parashar, Nanomed. (London) 13, 43 (2018)CrossRefGoogle Scholar
  78. 78.
    H.T. Liu, L.L. Ma, J. Liu, J.F. Zhao, J.Y. Yan, F.S. Hong, Toxicol. Environ. Chem. 92, 175 (2010)CrossRefGoogle Scholar
  79. 79.
    S. Li, H.Y. Tan, N. Wang, Z.J. Zhang, L. Lao, C.W. Wong, Y. Feng, Int. J. Mol. Sci. 16, 28087 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ingrid Fernández
    • 1
  • Angel J. Ceballos
    • 2
  • H. Bolaños
    • 3
  • J. E. Rodríguez-Páez
    • 1
    Email author
  1. 1.CYTEMAC Group, Department of Physics-FACNEDUniversity of CaucaPopayánColombia
  2. 2.Department of Pathology-Faculty of Health SciencesUniversity of CaucaPopayánColombia
  3. 3.Immunology and Infectious Diseases Research Group of the Faculty of Health SciencesUniversity of CaucaPopayánColombia

Personalised recommendations