Advertisement

Structural, Electrical, Thermal and Transport Properties of Poly Pyrrole/La0.7Ca0.3MnO3 Perovskite Manganite Nano Composite Studies Above Room Temperature

  • M. G. SmithaEmail author
  • M. V. MurugendrappaEmail author
Article
  • 7 Downloads

Abstract

This paper presents the thermal studies of organic–inorganic [Poly Pyrrole (PPy)–Lanthanum calcium manganite (LCM)] nano composites synthesized via facile in situ chemical oxidation and sol gel methods respectively. The morphology and crystal structure were analysed through scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD) techniques respectively. The ac electrical conductivity, transport properties like dielectric constant, dielectric loss, real and imaginary part of electric modulus of pure PPy and PPy/LCM nano composites were analyzed in the temperature range 30 °C to 180 °C and in the frequency range from 100 Hz–5 MHz. Thermal stability of pure PPy and PPy/LCM nano composites were analyzed in the temperature range 30 °C to 800 °C by Thermogravimetric analysis (TGA) and Differential thermal analysis. The contributor for thermal degradation were analysed by fourier transmission infra red studies. DC conductivity study was carried out in the temperature range 30 °C to 180 °C. The activation energy was calculated using arrhenius plots. SEM and TEM images show spherical structure for pure PPy, agglomeration for pure LCM and PPy/LCM nano composites show spherical with LCM embedded in the PPy chain. The XRD analysis for pure PPy, LCM and PPy/LCM nano composites show amorphous, orthorhombic and semicrystalline structures respectively. AC electrical conductivity of the samples tend to merge at high frequency side. Dielectric constant show frequency dependence at all temperature. Real and complex electric modulus analysis show contribution of grain and grain boundary for the ac electrical conductivity. DC conductivity shows ionic conduction. The AC and DC conductivities were found to be high for PPy/LCM30 weight percent and PPy/LCM40 weight percent nano composites respectively. The activation energy of PPy/LCM40 was found to be high. TGA shows that the glass transition temperature of pure PPy is not much affected with the incorporation of LCM nano particle to the PPy chain.

Keywords

Polypyrrole Lanthanum manganite Glass transition temperature Activation energy Complex modulus 

Notes

References

  1. 1.
    T.A. Skotheim, J.R. Reynolds, Handbook of Conducting Polymers, 3rd Edition, Conjugated Polymers (CRC Press Inc., Boca Raton, 2006)Google Scholar
  2. 2.
    M.H. Harun, E. Saion, A. Kassim, N. Yahya, E. Mahmud, Conjugated conducting polymers: a brief overview. J. Adv. Sci. Arts 2, 63–68 (2007)Google Scholar
  3. 3.
    G. Inzelt, Rise and rise of conducting polymers. J. Solid State Electrochem. 15(7–8), 1711 (2011)Google Scholar
  4. 4.
    R. Struèmpler, J. Glatz-Reichenbach, Conducting polymer composites. J. Electroceram. 3(4), 329 (1999)Google Scholar
  5. 5.
    A.K. Bhakshi, Electrically conducting polymers: from fundamental to applied research. Bull. Mater. Sci. 18(5), 469 (1995)Google Scholar
  6. 6.
    T.-M. Wu, S.-H. Lin, Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotubes composites. J. Polym. Sci. A 44, 6449–6457 (2006)Google Scholar
  7. 7.
    P.M. Carrasco, H.J. Grande, M. Cortazar, J.M. Alberdi, J. Areizaga, J.A. Pomposo, Structure–conductivity relationships in chemical polypyrroles of low, medium and high conductivity. Synth. Met. 156, 420–425 (2006)Google Scholar
  8. 8.
    Y. Bai, Z.-Y. Cheng, V. Bharti, H.S. Xu, Q.M. Zhang, High-dielectric constant ceramic-powder polymer composites. Appl. Phys. Lett. 76(25), 3804–3806 (2000)Google Scholar
  9. 9.
    Z.-M. Dang, Y.-H. Lin, C.-W. Nan, Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 15(19), 1625–1629 (2003)Google Scholar
  10. 10.
    R. Popielarz, C.K. Chiang, R. Nozaki, J. Obrzut, Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz. Macromolecules 34(17), 5910–5915 (2001)Google Scholar
  11. 11.
    C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951)Google Scholar
  12. 12.
    P. Duan, Z. Chen, S. Dai, L. Liu, J. Gao, Electrical transport and magnetic properties of perovskite-type electron-doped La–Pr–Mn–O epitaxial films. J. Magn. Magn. Mater. 301(2), 521–526 (2006)Google Scholar
  13. 13.
    S.S. Shinde, A.K. Jayant, V.K. Milind, Synthesis, characterization and electrical property of silver doped polypyrrole nanocomposites. J. Innov. Res. Sci. Eng. Technol. 3(6), 2319–8753 (2014)Google Scholar
  14. 14.
    J.B. Good Enough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100(2), 564 (1955)Google Scholar
  15. 15.
    S.K. Singh, S.B. Palmer, D. Mck Paul, M.R. Lees, Growth, transport, and magnetic properties of Pr0.67Ca0.33MnO3 thin films. Appl. Phys. Lett. 69, 263 (1966)Google Scholar
  16. 16.
    S. Kazim, S. Ahmad, J. Pfleger, J. Plestil, Y.M. Joshi, Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties. J. Mater. Sci. 47(1), 420–428 (2012)Google Scholar
  17. 17.
    E.L. Wolf, Nanophysics and Nanotechnology (Wiley-VchVerlagGmbH & Co., Weinheim, 2004)Google Scholar
  18. 18.
    S. Kazim, S. Ahmad, J. Pfleger, J. Plestil, Y.M. Joshi, Polyaniline–sodium montmorillonite clay nano composites: effect of clay concentration on thermal, structural, and electrical properties. J. Mater. Sci. 47, 420–428 (2012)Google Scholar
  19. 19.
    M.V. Murugendrappa, M.V.N. Ambika Prasad, Chemical synthesis, characterization, and direct-current conductivity studies of polypyrrole/γ-Fe2O3 composites. J. Appl. Polym. Sci. 103(5), 2797–2801 (2007)Google Scholar
  20. 20.
    H. Eisazadeh, Studying the characteristics of polypyrrole and its composites. World J. Chem. 2(2), 267–274 (2007)Google Scholar
  21. 21.
    B.V. Chaluvaraju, K.G. Sangappa, M.V. Murugendrappa, Thermo electric power study of polypyrrole/molybdenum trioxide composites. Polym. Sci. Ser. A 57(4), 467–472 (2015)Google Scholar
  22. 22.
    J. Harreld, H.P. Wong, B.C. Dave, B. Dunn, L.F. Nazar, Synthesis and properties of polypyrrole–vanadium oxide hybrid aerogels. J. Non-Cryst. Solids 225, 319–324 (1998)Google Scholar
  23. 23.
    J. Koshy, J. Kurian, R. Jose, A.M. John, P.K. Sajith, J. James, S.P. Pai, R. Pinto, Characterization and dielectric property analysis of A-site doped LaTiO3-δ perovskite synthesized by ball milling method. Bull. Mater. Sci. 22, 243 (1999)Google Scholar
  24. 24.
    J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and System (Wiley, New York, 2007)Google Scholar
  25. 25.
    V.S.R. Channu, R. Holze, Synthesis and characterization of a polyaniline-modified SnO2 nano composite. Ionics 18, 495–500 (2012)Google Scholar
  26. 26.
    S. Sarmah, A. Kumar, Photo catalytic activity of polyaniline-TiO2 nanocomposites. Indian J. Phys. 85(5), 713–726 (2011)Google Scholar
  27. 27.
    M. Dahlhaus, F. Beck, Characterization of anodically formed polypyrrole/tungsten trioxide composites. J. Appl. Electrochem. 23(10), 957–965 (1993)Google Scholar
  28. 28.
    Z. Huang, S. Wang, H. Li, S. Zhang, Z. Tan, Thermal stability of several polyaniline/rare earth oxide composites. J. Therm. Anal. Calorim. 115, 259–266 (2014)Google Scholar
  29. 29.
    P.L. Deepti, S.K. Patri, R.N.P. Choudhary, MgBi2V2O9: preparation and electrical property evaluation. J. Mater. Sci. 28(21), 16071–16076 (2017)Google Scholar
  30. 30.
    S. Ma, Y. Liu, X. Shi, M. Zhao, D. Liu, CTAB-assisted hydrothermal synthesis and luminescence properties of BiPO4:Eu3+ phosphors. J. Mater. Sci. 28(21), 15154–15160 (2017)Google Scholar
  31. 31.
    J. Hou, G. Zhu, J. Zheng, Synthesis, characterization and corrosion protection study of polypyrrole/phosphotungstate coating on low alloy steel in sea water. Polym. Sci. 53(9–10), 546–552 (2011)Google Scholar
  32. 32.
    Z. Shen, D. Li, Influence of lithium content on the structural and electrochemical properties of Li1.20+xMn0.54Ni0.13Co0.13O2 cathode materials for Li-ion batteries. J. Mater. Sci. 28(18), 13257–13266 (2017)Google Scholar
  33. 33.
    M. Jose, M. Elakiya, S.A.M. Dhas, Structural and optical properties of nanosized ZnO/ZnTiO3 composite materials synthesized by a facile hydrothermal technique. J. Mater. Sci. 28(18), 13649–13658 (2017)Google Scholar
  34. 34.
    B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, Study of dielectric properties of polypyrrole/titanium dioxide and polypyrrole/titanium dioxide–MWCNT nano composites. J. Mater. Sci. 27(1), 1044–1055 (2016)Google Scholar
  35. 35.
    O.G. Abdullah, R.R. Hanna, Y.A. Salman, Structural, optical, and electrical characterization of chitosan: methylcellulose polymer blends based film. J. Mater. Sci.: Mater. Electron. 28(14), 10283–10294 (2017)Google Scholar
  36. 36.
    I.S. Banu, S.D. Lakshmi, Simultaneous enhancement of room temperature multiferroic properties of BiFeO3 by Nd doping at Bi site and Co doping at Fe site. J. Mater. Sci.: Mater. Electron. 28(21), 16044–16052 (2017)Google Scholar
  37. 37.
    X. Wang, M. Yang, H. Yan, S. Qi, The characterization and preparation of core–shell structure particles of carbon-sphere@NiFe2O4@PPy as microwave absorbing materials in X band. J. Mater. Sci.: Mater. Electron. 28(20), 14988–14995 (2017)Google Scholar
  38. 38.
    M. Valian, F. Beshkar, M. Salavati-Niasari, Urchin-like Dy2CoMnO6 double perovskite nanostructures: new simple fabrication and investigation of their photocatalytic properties. J. Mater. Sci.: Mater. Electron. 28(20), 14996–15003 (2017)Google Scholar
  39. 39.
    T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, Facile synthesis of blue anatase TiO2 films by solvent evaporation method. J. Mater. Sci.: Mater. Electron. 28(20), 15074–15080 (2017)Google Scholar
  40. 40.
    B.K. Das, T. Das, K. Parashar, A. Thirumurugan, S.K. Parashar, Structural, band gap tuning and electrical properties of Cu doped ZnO nanoparticles synthesized by mechanical alloying. J. Mater. Sci.: Mater. Electron. 28(20), 15127–15134 (2017)Google Scholar
  41. 41.
    A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)Google Scholar
  42. 42.
    S. Sinha, S.K. Chaterjee, J. Ghosh, A.K. Meikap, Analysis of the dielectric relaxation and ac conductivity behavior of polyvinyl alcohol-cadmium selenide nanocomposite films. Polym. Compos. 38, 287–298 (2017)Google Scholar
  43. 43.
    J. Mohanty, P. Behera, S.R. Mishra, T. Badapanda, S. Anwar, Dielectric and conduction behaviour of H2SO4 doped conducting polyaniline. IOP Conf. Ser. 178, 012014 (2017)Google Scholar
  44. 44.
    S. Banerjee, A. Kumar, Dielectric spectroscopy for probing the relaxation and charge transport in polypyrrole nanofibers. J. Appl. Phys. 109, 114313–114321 (2011)Google Scholar
  45. 45.
    S. Banerjee, A. Kumar, Relaxation and charge transport phenomena in polyaniline nanofibers: swift heavy ion irradiation effects. J. Non-Cryst. Solids 358(22), 2990–2998 (2012)Google Scholar
  46. 46.
    N. Kumar, N. Bastola, S. Kumar, R. Ranjan, Relaxor dielectric behavior in BaTiO3 substituted BiFeO3–PbTiO3 multiferroic system. J. Mater. Sci. 28(14), 10420–10426 (2017)Google Scholar
  47. 47.
    S. Bhavani, M. Ravi, Y. Pavani, V. Raja, R.S. Karthikeya, V.V.R.N. Rao, Ion conducting polyvinyl alcohol based polymer electrolyte films. J. Mater. Sci. 28(18), 13344–13349 (2017)Google Scholar
  48. 48.
    Q. Chi, Z. Gao, C. Zhang, Y. Cui, J. Dong, X. Wang, Q. Lei, Dielectric properties of sandwich-structured BaTiO3/polyimide hybrid films. J. Mater. Sci. 28(20), 15142–15148 (2017)Google Scholar
  49. 49.
    K. Prompa, E. Swatsitang, T. Putjuso, Very low loss tangent and giant dielectric properties of CaCu3Ti4O12 ceramics prepared by the sol–gel process. J. Mater. Sci. 28(20), 15033–15042 (2017)Google Scholar
  50. 50.
    T. Mahapatra, S. Halder, S. Bhuyan, R.N.P. Choudhary, Dielectric, resistive and conduction characteristics of lead-free complex perovskite electro-ceramic: (Bi1/2K1/2)(Zn1/2W1/2)O3. J. Electron. Mater. 47(11), 6663–6670 (2018)Google Scholar
  51. 51.
    V. Sridhar, D. Xu, T.T. Pham, S.P. Mahapatra, J.K. Kim, Dielectric and dynamic mechanical relaxation behavior of exfoliated nano graphite reinforced flouroelastomer composites. Polym. Compos. 30(3), 334–342 (2009)Google Scholar
  52. 52.
    J. Li, J.K. Kim, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67(10), 2114–2120 (2007)Google Scholar
  53. 53.
    F. Henn, J.C. Giuntini, J.V. Zanchetta, AC conductivity in ionic glasses: analysis of different methods of investigation. J. Non-Cryst. Solids 131(2), 1084–1088 (1991)Google Scholar
  54. 54.
    M. Pishahang, E. Bakken, S. Stølen, C.I. Thomas, P.I. Dahl, Oxygen non stoichiometry, redox thermodynamics and structure of LaFe1 − xCoxO3 − δ. Solid State Ionics 19, 869–878 (2013)Google Scholar
  55. 55.
    E.I. Leonidova, I.A. Leonidov, M.V. Patrakeev, V.L. Kozhevnikov, Oxygen non-stoichiometry, high-temperature properties, and phase diagram of CaMnO3–δ. Solid State Electrochem. 15(5), 1071–1075 (2011)Google Scholar
  56. 56.
    L. Rørmark, K. Wiik, S. Stølen, T. Grande, Oxygen stoichiometry and structural properties of La1 − xAxMnO3 ± δ (A = Ca or Sr and 0 ≤ x ≤ 1). Mater. Chem. 12(4), 1058–1067 (2002)Google Scholar
  57. 57.
    A. Rosemary, Electrical conductivity relaxation of polycrystalline PrBaCo2O5+δ thin films. Solid State Ionics 228(30), 14–18 (2012)Google Scholar
  58. 58.
    A. Kassim, M. Sagadavan, F. Adzmi, H.N.H. Mahmud Ekramul, Conducting polymer/clay composites: preparation and characterization. Mater. Sci. 10(3), 255–258 (2004)Google Scholar
  59. 59.
    B. Das, S. Kumar, S. Chakraborty, D. Chakraborty, S. Gangopadhyay, Synthesis and characterization of polyacrylamide–polyaniline conductive blends. J. Appl. Polym. Sci. 69, 841–844 (1998)Google Scholar
  60. 60.
    N.C. Greeham, S.C. Moratti, D.D.C. Bradley, R.H. Friend, A.B. Holmes, Efficient light-emitting diodes based on polymers with high electron affinities. Nature 365, 628–630 (1993)Google Scholar
  61. 61.
    M. Kobayashi, N. Colaneri, M. Boysel, F. Wudl, A.J. Heeger, The electronic and electrochemical properties of poly(isothianaphthene). J. Chem. Phys. 82, 5717–5723 (1985)Google Scholar
  62. 62.
    V.S. Sangawar, P.S. Chikhalikar, J.R. Dhokane, A.U. Ubale, S.D. Meshram, Bandgap determination of PVC-charcoal composite thin film from UV measurements. Acta Ciencia 32(4), 477–484 (2006)Google Scholar
  63. 63.
    M.E. Achour, A. Droussi, D. Medine, A. Oueriagli, A. Outzourhit, A. Belhadj Mohamed, H. Zangar, Thermal and dielectric properties of polypyrrolepoly (methyl methacrylate) nanocomposites. Int. J. Phys. Sci. 6(22), 5075–5079 (2011)Google Scholar
  64. 64.
    C. Fadnis, S.R. Illiger, K.P. Rao, T. Demappa, Miscibility studies of HPMC/PVA Blends in water by viscocity, density, refractive index and ultrasonic velocity method. J. Carbohydr. Polym. 74(4), 779–782 (2008)Google Scholar
  65. 65.
    S. Strübing, H. Metz, K. Mäder, Mechanistic analysis of drug release from tablets with membrane controlled drug delivery. Eur. J. Pharm. Biopharm. 66(1), 113–119 (2007)Google Scholar
  66. 66.
    P. Syed Abthagir, R. Saraswathi, Thermal stability of polypyrrole prepared from a ternary eutectic melt. Mater. Chem. Phys. 92(1), 21–26 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsRNS Institute of TechnologyBangaloreIndia
  2. 2.Department of PhysicsB.M.S College of EngineeringBangaloreIndia

Personalised recommendations