Ultrasonic-Assisted Sol–Gel Synthesis of Core–Shell Silica Particles for High-Performance Liquid Chromatography

  • Lingping Cheng
  • Jianfeng Cai
  • Yanxiong KeEmail author


Core–shell particles (CSPs), also known as superficially porous particles or fused-core particles, consisting of a solid core and a porous shell, have emerged as an advanced technology in high-performance liquid chromatography (HPLC). We report here an ultrasonic-assisted sol–gel method for the fabrication of CSPs with uniform mesoporous silica shell using tetraethoxysilane as the silica source and dodecylamine as a catalyst, template and porogen agent in a methanol–water solution. Instead of stirring, sonication was adopted to guarantee the particles monodispersity and uniformity. The shell thickness between 300 and 700 nm could be obtained by adjusting the sonication time and the volume ratio of methanol–water. Pore sizes from 3.4 to 8.5 nm were tuned by hydrothermal treatment. The C18-bonded 2.7 μm CSPs with a shell thickness of ~ 500 nm showed some advantages over a commercial 1.7 μm BEH column, and successfully applied for the analyses of a Chinese medicine and peptides. The CSPs could be a promising candidate as HPLC packing materials.


Core–shell particles (CSPs) Sonication Sol–gel process Dodecylamine (DDA) High-performance liquid chromatography (HPLC) 



This work was supported by the National Natural Science Foundation of China (Grant No. 21375038).

Supplementary material

10904_2019_1239_MOESM1_ESM.docx (700 kb)
Supplementary material 1 (DOCX 699 kb)


  1. 1.
    C.E. Mora-Huertas, H. Fessi, A. Elaissari, Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 385, 113–142 (2010)CrossRefGoogle Scholar
  2. 2.
    M.W. Tibbitt, J.E. Dahlman, R. Langer, Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138, 704–717 (2016)CrossRefGoogle Scholar
  3. 3.
    X. Sun, D. Li, Y. Ding, W. Zhu, S. Guo, Z. Wang, S. Sun, Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc. 136, 745–5749 (2014)Google Scholar
  4. 4.
    B.W.J. Pirok, P. Breuer, S.J.M. Hoppe, M. Chitty, E. Welch, T. Farkas, S. van der Wal, R. Peters, P.J. Schoenmakers, Size-exclusion chromatography using core-shell particles. J. Chromatogr. A 1486, 96–102 (2017)CrossRefGoogle Scholar
  5. 5.
    V. González-Ruiz, A.I. Olives, M.A. Martín, Core-shell particles lead the way to renewing high-performance liquid chromatography. TrAC Trend Anal. Chem. 64, 17–28 (2015)CrossRefGoogle Scholar
  6. 6.
    F. Gritti, G. Guiochon, Mass transfer kinetics, band broadening and column efficiency. J. Chromatogr. A 1221, 2–40 (2012)CrossRefGoogle Scholar
  7. 7.
    P.W. Carr, D.R. Stoll, X.L. Wang, Perspectives on recent advances in the speed of high-performance liquid chromatography. Anal. Chem. 83, 1890–1900 (2011)CrossRefGoogle Scholar
  8. 8.
    G. Guiochon, F. Gritti, Shell particles, trials, tribulations and triumphs. J. Chromatogr. A 1218, 1915–1938 (2011)CrossRefGoogle Scholar
  9. 9.
    J.W. Ludvigsson, A. Karlsson, V. Kjellberg, Core-shell column Tanaka characterization and additional tests using active pharmaceutical ingredients. J. Sep. Sci. 39, 4520–4532 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Hayes, A. Ahmed, T. Edge, H. Zhang, Core-shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A 1357, 36–52 (2014)CrossRefGoogle Scholar
  11. 11.
    N. Tanaka, D.V. McCalley, Core-shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography. Anal. Chem. 88, 279–298 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Dong, J.D. Brennan, Rapid fabrication of core-shell silica particles using a multilayer-by-multilayer approach. Chem. Commun. 47, 1207–1209 (2011)CrossRefGoogle Scholar
  13. 13.
    H. Dong, J.D. Brennan, Tailoring the properties of sub-3 μm silica core-shell particles prepared by a multilayer-by-multilayer process. J. Colloid Interface Sci. 437, 50–57 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Büchel, K.K. Unger, A. Matsumoto, K. Tsutsumi, A novel pathway for synthesis of submicrometer-size solid core/mesoporous shell silica spheres. Adv. Mater. 10, 1036–1038 (1998)CrossRefGoogle Scholar
  15. 15.
    S.B. Yoon, J.-Y. Kim, J.H. Kim, Y.J. Park, K.R. Yoon, S.-K. Park, J.-S. Yu, Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. J. Mater. Chem. 17, 1758–1761 (2007)CrossRefGoogle Scholar
  16. 16.
    Q. Qu, Y. Min, L. Zhang, Q. Xu, Y. Yin, Silica microspheres with fibrous shells: synthesis and application in HPLC. Anal. Chem. 87, 9631–9638 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Cheng, J. Cai, Y. Ke, Synthesis of large-pore silica microspheres using dodecylamine as a catalyst, template and porogen agent. J. Inorg. Organomet. Polym. (2019). Google Scholar
  18. 18.
    W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  19. 19.
    Q. Liu, L.T. Wang, S.Q. Dong, Z.X. Zhang, L. Zhao, Preparation and characterization of SiO2/SiO2 core-shell microspheres as RP-HPLC stationary phase. J. Inorg. Organomet. Polym. 21, 941–945 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Ahmed, H. Ritchie, P. Myers, H. Zhang, One-pot synthesis of spheres-on-sphere silica particles from a single precursor for fast HPLC with low back pressure. Adv. Mater. 24, 6042–6048 (2012)CrossRefGoogle Scholar
  21. 21.
    W. Zhang, J. Chen, W. Wang, G. Lu, L. Hao, Y. Ni, C. Lu, Z. Xu, Ultrasonic assisted rapid synthesis of high uniform super-paramagnetic microspheres with core-shell structure and robust magneto-chromatic ability. J. Magn. Magn. Mater. 426, 1–10 (2017)CrossRefGoogle Scholar
  22. 22.
    A.-L. Morel, S.I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai-Kee-Him, C. Labrugere, B. Chevalier, G. Deleris, C. Petibois, A. Brisson, M. Simonoff, Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano 2, 847–856 (2008)CrossRefGoogle Scholar
  23. 23.
    F. Dang, K. Kato, H. Imai, S. Wada, H. Haneda, M. Kuwabara, Oriented aggregation of BaTiO3 nanocrystals and large particles in the ultrasonic-assistant synthesis. CrystEngComm 12, 3441–3444 (2010)CrossRefGoogle Scholar
  24. 24.
    S.M. Chang, M. Lee, W.-S. Kim, Preparation of large monodispersed spherical silica particles using seed particle growth. J. Colloid Interface Sci. 286, 536–542 (2005)CrossRefGoogle Scholar
  25. 25.
    G.H. Bogush, C.F. Zukoski, Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J. Colloid Interface Sci. 142, 1–18 (1991)CrossRefGoogle Scholar
  26. 26.
    S.-L. Chen, P. Dong, G.-H. Yang, J.-J. Yang, Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate. Ind. Eng. Chem. Res. 35, 4487–4493 (1996)CrossRefGoogle Scholar
  27. 27.
    Q. Hu, X. Chen, N. Zhao, Y. Li, C. Mao, Fabrication and characterization of dodecylamine derived monodispersed mesoporous bioactive glass sub-micron spheres. J. Sol Gel Sci. Technol. 69, 9–16 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Du, L. Cheng, L. Chen, Y. He, Y. Wu, S. He, Y. Ke, Preparation of sub-2 μm large-pore monodispersed mesoporous silica spheres using mixed templates and application in HPLC. Microporous Mesoporous Mater. 265, 234–240 (2018)CrossRefGoogle Scholar
  29. 29.
    A. Sayari, Y. Yang, M. Kruk, M. Jaroniec, Expanding the pore size of MCM-41 silicas: use of amines as expanders in direct synthesis and postsynthesis procedures. J. Phys. Chem. B 103, 3651–3658 (1999)CrossRefGoogle Scholar
  30. 30.
    P.T. Tanev, T.J. Pinnavaia, A neutral templating route to mesoporous molecular sieves. Science 267, 865–867 (1995)CrossRefGoogle Scholar
  31. 31.
    E. Oláh, S. Fekete, J. Fekete, K. Ganzler, Comparative study of new shell-type, sub-2 μm fully porous and monolith stationary phases, focusing on mass-transfer resistance. J. Chromatogr. A 1217, 3642–3653 (2010)CrossRefGoogle Scholar
  32. 32.
    A. Cavazzini, F. Gritti, K. Kaczmarski, N. Marchetti, G. Guiochon, Mass-transfer kinetics in a shell packing material for chromatography. Anal. Chem. 79, 5972–5979 (2007)CrossRefGoogle Scholar
  33. 33.
    B. Chen, J. Xu, Q. Fu, X. Dong, Z. Guo, Y. Jin, X. Liang, Evaluation of separation properties of a modified strong cation exchange material named MEX and its application in 2D-MEX×C18 system to separate peptides from scorpion venom. Analyst 140, 4676–4686 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of EducationEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.East China University of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations