Synthesis, Crystal Structures, and Photocatalytic Activity of Two Nickel(II) Coordination Polymers with Flexible Bis(benzimidazol-1-yl)alkane and Polycarboxylate Ligands

  • Yong-Sheng Shi
  • Dong Liu
  • Yue-Hua Li
  • Gui-Ying DongEmail author


Two ternary Ni(II) coordination polymers (CPs) named as: {[Ni2(L1)2(1,8-NDC)2(H2O)2]·2H2O}n (1), {[Ni2(L2)1.5(FA)(H2O)3]·3.75H2O}n (2), (L1 = 1,6-bis(5,6-dimethylbenzimidazol-1-yl)hexane, L2 = bis(5,6-dimethylbenzimidazol-1-yl)methane, 1,8-H2NDC = 1,8-naphthalenedicarboxylic acid, H4FA = 4,4′-(hexafluoroisopropylidene)diphthalic acid) were hydrothermally synthesized and characterized through physicochemical and spectroscopic methods. CP 1 features a 1D double straight-line chain and further extends into a 2D layers via π–π stacking interactions, while CP 2 shows a unique 2D (5,4,4)-connected network. The thermal stabilities, luminescence properties and photocatalytic activities of CPs 12 for methylene blue decomposition were also presented in detail.

Graphic Abstract

Two luminescent Ni(II) coordination polymers (CPs) were synthesized under hydrothermal condition. The crystal structure of CP 1 features a 1D double straight-line chain and further extends into a 2D layers via ππ stacking interactions, while CP 2 shows a unique 2D (5,4,4)-connected network. The photocatalytic experiments in the presence of catalysts CP 1 indicated higher degradation efficiency for MB solution than CP 2, and ·OH radical plays a key effect in the efficient degradation of MB.


Bis(benzimidazol-l-yl)alkane Crystal structure Ni(II) coordination polymer Photocatalytic activity ππ stacking interaction 1,8-Naphthalenedicarboxylic acid 



The project was supported by the National Natural Science Foundation of China (51474086), Natural Science Foundation-Steel and Iron Foundation of Hebei Province (B2015209299).

Supplementary material

10904_2019_1228_MOESM1_ESM.doc (722 kb)
Supplementary material 1 (DOC 722 kb)


  1. 1.
    H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341, 974–987 (2013)CrossRefGoogle Scholar
  2. 2.
    Z. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43, 5815–5840 (2014)CrossRefGoogle Scholar
  3. 3.
    C.C. Wang, X.H. Yi, P. Wang, Appl. Catal. B 247, 24–28 (2019)CrossRefGoogle Scholar
  4. 4.
    S.J. Liu, S.D. Han, J.P. Zhao, J. Xu, X.H. Bu, Coord. Chem. Rev. 394, 39–52 (2019)CrossRefGoogle Scholar
  5. 5.
    S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 43, 6116–6140 (2014)CrossRefGoogle Scholar
  6. 6.
    C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. 7, 2831–2867 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Azhar, Y.C. Li, Z.X. Cai, M.B. Zakaria, M.K. Masud, M.S.A. Hossain, J. Kim, W. Zhang, J.B. Na, Y. Yamauchi, M. Hu, Bull. Chem. Soc. Jpn. 92, 875–904 (2019)CrossRefGoogle Scholar
  8. 8.
    S. Dang, Q.L. Zhu, Q. Xu, Nat. Rev. Mater 3, 1–13 (2017)Google Scholar
  9. 9.
    L. Mei, W.Q. Shi, Z.F. Chai, Bull. Chem. Soc. Jpn 91, 554–562 (2018)CrossRefGoogle Scholar
  10. 10.
    S.S. Bao, G.K.H. Shimizu, L.M. Zheng, Coord. Chem. Rev. 378, 577–594 (2019)CrossRefGoogle Scholar
  11. 11.
    Y. Cui, B. Chen, G. Qian, Coord. Chem. Rev. 273–274, 76 (2014)CrossRefGoogle Scholar
  12. 12.
    J.X. Li, Z.B. Qin, Y.H. Li, G.H. Cui, Ultrasonund Sonochem. 48, 127–135 (2018)CrossRefGoogle Scholar
  13. 13.
    J.W. Cui, Y.Q. Zhao, Z.C. Hao, G.H. Cui, Res. Chem. Intermed. 44, 721–738 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Du, C.P. Li, C.S. Liu, S.M. Fang, Coord. Chem. Rev. 257, 1282–1305 (2013)CrossRefGoogle Scholar
  15. 15.
    J.X. Li, D. Liu, Z.C. Hao, G.H. Cui, Inorg. Chem. Commun. 97, 79–82 (2018)CrossRefGoogle Scholar
  16. 16.
    Q.L. Lu, J. Luan, X.L. Wang, H.Y. Lin, M. Le, G.C. Liu, Polyhedron 83, 108–115 (2014)CrossRefGoogle Scholar
  17. 17.
    J.M. Hu, V.A. Blatov, B. Yu, K. Van Hecke, G.H. Cui, Dalton Trans 45, 2426–2429 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Yang, G.Y. Liu, K. Van Hecke, G.H. Cui, Z. Anorg, Allg. Chem 641, 1980–1986 (2015)CrossRefGoogle Scholar
  19. 19.
    J.M. Hao, B.Y. Yu, K. Van Hecke, G.H. Cui, CrystEngComm 17, 2279–2294 (2015)CrossRefGoogle Scholar
  20. 20.
    X.X. Wang, B. Yu, K. Van Hecke, G.H. Cui, RSC Adv. 4, 61281–61311 (2014)CrossRefGoogle Scholar
  21. 21.
    C.L. Ming, Z.C. Hao, B.Y. Yu, K. Van Hecke, G.H. Cui, J. Inorg. Organomet. Polym. Mater. 25, 559–568 (2014)CrossRefGoogle Scholar
  22. 22.
    J.M. Hu, Y.G. Liu, K. Van Hecke, G.H. Cui, L.H. Han, Z. Anorg, Allg. Chem 641, 1263–1268 (2015)CrossRefGoogle Scholar
  23. 23.
    X.X. Wang, Y.N. Zhao, G.Y. Li, G.H. Cui, Transit. Met. Chem. 39, 653–660 (2014)CrossRefGoogle Scholar
  24. 24.
    Q. Guo, C. Xu, B. Zhao, Y. Jia, H. Hou, Y. Fan, Cryst. Growth Des. 12, 5439–5446 (2012)CrossRefGoogle Scholar
  25. 25.
    L. Liu, C. Huang, Z. Wang, D. Wu, H. Hou, Y. Fan, CrystEngComm 15, 7095–7115 (2013)CrossRefGoogle Scholar
  26. 26.
    L. Liu, Y. Liu, G. Han, D. Wu, H. Hou, Y. Fan, Inorg. Chim. Acta 403, 25–34 (2013)CrossRefGoogle Scholar
  27. 27.
    L. Liu, J. Ding, C. Huang, M. Li, H. Hou, Y. Fan, Cryst. Growth Des. 14, 3035–3043 (2014)CrossRefGoogle Scholar
  28. 28.
    G.H. Cui, C.H. He, C.H. Jiao, J.C. Geng, V.A. Blatov, CrystEngComm 14, 4210–4216 (2012)CrossRefGoogle Scholar
  29. 29.
    T.A. Fairley, R.R. Tidwell, I. Donkor, N.A. Naiman, K.A. Ohemeng, R.J. Lombardy, J.A. Bentley, M. Cory, J. Med. Chem. 36, 1746–1753 (1993)CrossRefGoogle Scholar
  30. 30.
    G.M. Sheldrick, SADABS, University of Göttingen, Germany, C71, 2253–2256 (1996)Google Scholar
  31. 31.
    G.M. Sheldrick, Acta Crystallogr. C 71, 3–8 (2015)CrossRefGoogle Scholar
  32. 32.
    A.L. Spek, Acta Crystallogr. A D65, 148–165 (2009)Google Scholar
  33. 33.
    C.L. Ming, L.N. Wang, K. Van Hecke, G.H. Cui, Spectrochim. Acta A 129, 125–130 (2014)CrossRefGoogle Scholar
  34. 34.
    V. Blatov, Struct. Chem. 23, 955–959 (2017)CrossRefGoogle Scholar
  35. 35.
    H.D. Yin, M. Hong, Q.B. Wang, S.C. Xue, D.Q. Wang, J. Organomet. Chem. 690, 1669–1676 (2005)CrossRefGoogle Scholar
  36. 36.
    X. Zhang, G.Y. Dong, Y.G. Liu, G.H. Cui, J. Inorg. Organomet. Polym. Mater. 26, 62–76 (2015)CrossRefGoogle Scholar
  37. 37.
    S.Y. Hao, Z.C. Hao, Y.G. Liu, G.Y. Dong, Chin. J. Struc. Chem. 36, 118–126 (2017)Google Scholar
  38. 38.
    S.L. Yao, S.J. Liu, X.M. Tian, T.F. Zheng, C. Cao, C.Y. Niu, Y.Q. Chen, J.L. Chen, H. Huang, H.R. Wen, Adv. Inorg. Chem. 58, 3578–3581 (2019)CrossRefGoogle Scholar
  39. 39.
    F. Wang, F.L. Li, M.M. Xu, H. Yu, J.G. Zhang, H.T. Xia, J.P. Lang, J. Mater. Chem. A 3, 5908–5916 (2015)CrossRefGoogle Scholar
  40. 40.
    L. Wen, J. Zhao, K. Lv, Y. Wu, K. Deng, X. Leng, D. Li, Cryst. Growth Des. 12, 1603–1612 (2012)CrossRefGoogle Scholar
  41. 41.
    J. Guo, J.F. Ma, J.J. Li, J. Yang, S.X. Xing, Cryst. Growth Des. 12, 6074–6082 (2012)CrossRefGoogle Scholar
  42. 42.
    J. Guo, J. Yang, Y.Y. Liu, J.F. Ma, CrystEngComm 14, 6609–6617 (2012)CrossRefGoogle Scholar
  43. 43.
    C. Zhao, L. Zhao, X. Liu, L. Meng, Inorg. Chim. Acta 486, 48–54 (2019)CrossRefGoogle Scholar
  44. 44.
    N. Kuritz, T. Stein, R. Baer, L. Kronik, J. Chem. Theory Comput. 7, 2408–2415 (2011)CrossRefGoogle Scholar
  45. 45.
    B.R. Masters, J. Biomed. Opt. 18, 9901–9905 (2013)Google Scholar
  46. 46.
    L.L. Liang, Y.Y. Gao, Q. Yue, E.Q. Gao, Inorg. Chim. Acta 461, 102–110 (2017)CrossRefGoogle Scholar
  47. 47.
    J.X. Li, Y.F. Li, L.W. Liu, G.H. Cui, Ultrason. Sonochem. 41, 196–205 (2018)CrossRefGoogle Scholar
  48. 48.
    H.N. Chang, S.X. Hou, Z.C. Hao, G.H. Cui, Polyhedron 141, 276–283 (2018)CrossRefGoogle Scholar
  49. 49.
    H.N. Chang, Y.F. Li, G.H. Cui, S.C. Wang, Transit. Met. Chem. 42, 509–515 (2017)CrossRefGoogle Scholar
  50. 50.
    H.N. Chang, Y.G. Liu, Z.C. Hao, G.H. Cui, J. Inorg. Organomet. Polym. Mater. 26, 855–863 (2016)CrossRefGoogle Scholar
  51. 51.
    W. Jiang, Z. Qiu, W. Yao, Y. Zhu, W. Cui, Appl. Catal. B 204, 43–48 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yong-Sheng Shi
    • 1
  • Dong Liu
    • 1
  • Yue-Hua Li
    • 1
  • Gui-Ying Dong
    • 1
    Email author
  1. 1.College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic MaterialsNorth China University of Science and TechnologyTangshanPeople’s Republic of China

Personalised recommendations