Advertisement

Coordination Polymer Based on Nickel(II) Maleate and 4′-Phenyl-2,2′:6′,2″-Terpyridine: Synthesis, Crystal Structure and Conjugated Thermolysis

  • Igor E. UflyandEmail author
  • Vladimir A. Zhinzhilo
  • Gulzhian I. Dzhardimalieva
Article
  • 19 Downloads

Abstract

New complex (1) based on nickel(II) maleate and 4′-phenyl-2,2′:6′,2″-terpyridine (L) was synthesized. The complex 1 is a 1D coordination polymer formed from a L-Ni(II) node bridged by maleate ligands and crystallizes in monoclinic form with space group P21/n. There are two Ni(II) moiety’s in the asymmetric unit. Each nickel atom is five coordination and is chelated by three nitrogen atoms of L and two oxygen atoms of Mal fragments with the formation of a NiN3O2 chelate node. The polyhedron of the first Ni(II) moiety is close to the ideal tetragonal pyramidal structure, while the polyhedron of the second Ni(II) moiety belongs to the distorted tetragonal pyramidal structure. The main stages and kinetics features of the conjugated thermolysis of complex 1 were evaluated. Metal–polymer nanocomposite containing Ni nanoparticles uniformly distributed in a stabilizing nitrogen-containing polymer matrix was obtained.

Keywords

Coordination polymer Crystal structure Metal chelate Nanomaterial Thermolysis 

Notes

Acknowledgements

We are grateful to Dr. Kyrill Y. Suponitsky (A.N. Nesmeyanov Institute of Organoelement Compounds, Moscow) for X-ray study.

References

  1. 1.
    G.I. Dzhardimalieva, I.E. Uflyand, Design and synthesis of coordination polymers with chelated units and their application in nanomaterials science. RSC Adv. 7, 42242–42288 (2017)CrossRefGoogle Scholar
  2. 2.
    A.D. Pomogailo, G.I. Dzhardimalieva, A.S. Rozenberg, D.M. Muraviev, Kinetics and mechanism of in situ simultaneous formation of metal nanoparticles in stabilizing polymer matrix. J. Nanopart. Res. 5, 497–519 (2003)CrossRefGoogle Scholar
  3. 3.
    VYu. Musatova, S.A. Semenov, D.V. Drobot, A.S. Pronin, A.D. Pomogailo, G.I. Dzhardimalieva, V.I. Popenko, Synthesis and thermal conversions of unsaturated nickel(II) dicarboxylates as precursors of metallopolymer nanocomposites. Russ. J. Inorg. Chem. 61, 1111–1124 (2016)CrossRefGoogle Scholar
  4. 4.
    S.A. Semenov, VYu. Musatova, D.V. Drobot, G.I. Dzhardimalieva, Thermal decomposition of unsaturated nickel(II) dicarboxylates. Russ. J. Inorg. Chem. 63, 1217–1224 (2018)CrossRefGoogle Scholar
  5. 5.
    M. Padmanabhan, J.C. Joseph, A. Thirumurugan, C.N.R. Rao, Maleate–fumarate conversion and other novel aspects of the reaction of a Co(II) maleate with pyridine and bipyridine. Dalton Trans. 21, 2809–2811 (2008)CrossRefGoogle Scholar
  6. 6.
    J.-M. Yang, Z.-H. Zhou, H. Zhang, H.-L. Wan, S.-J. Lu, Temperature effect on the conversions of phthalato and maleato manganese(II) complexes with diamine ligands. Inorg. Chim. Acta 358, 1841–1849 (2005)CrossRefGoogle Scholar
  7. 7.
    L.I. Yudanova, V.A. Logvinenko, N.F. Yudanov, N.A. Rudina, A.V. Ishchenko, P.P. Semyannikov, L.A. Sheludyakova, N.I. Alferova, Thermolysis of copper(II) salts of maleic acid. Synthesis of metal–polymer composites. Russ. J. Coord. Chem. 39, 415–420 (2013)CrossRefGoogle Scholar
  8. 8.
    L.I. Yudanova, V.A. Logvinenko, L.A. Sheludyakova, N.F. Yudanov, P.P. Semyannikov, S.I. Kozhemyachenko, I.V. Korolkov, N.A. Rudina, A.V. Ishchenko, Maleates of Mn(II), Fe(II), Co(II), and Ni(II) as precursors for synthesis of metal-polymer composites. Russ. J. Inorg. Chem. 59, 1180–1186 (2014)CrossRefGoogle Scholar
  9. 9.
    V.A. Logvinenko, L.I. Yudanova, N.F. Yudanov, G.N. Chekhova, Thermal analysis of transition metal salts of carboxylic acids. The way for the synthesis of metal–polymer composites. J. Therm. Anal. Calorim. 74, 395–399 (2003)CrossRefGoogle Scholar
  10. 10.
    L.I. Yudanova, V.A. Logvinenko, L.A. Sheludyakova, I.V. Korolkov, A.V. Ishchenko, N.A. Rudina, Regularities of thermolysis for the Fe(II), Co(II), and Ni(II) salts of maleic and ortho-phthalic acids with the formation of metal/polymer composites. Russ. J. Coord. Chem. 43, 446–452 (2017)CrossRefGoogle Scholar
  11. 11.
    A.K. Nikumbh, S.K. Pardeshi, M.N. Raste, A study of the thermal decomposition of copper(II) and zinc(II) malonate, maleate and succinate complexes using direct current electrical conductivity measurements. Thermochim. Acta 374, 115–128 (2001)CrossRefGoogle Scholar
  12. 12.
    N.-Q. Bui, C. Geantetand, G. Berhault, Activation of regenerated CoMo/Al2O3 hydrotreating catalysts by organic additives—The particular case of maleic acid. Appl. Catal. A 572, 185–196 (2019)CrossRefGoogle Scholar
  13. 13.
    L.I. Yudanova, V.A. Logvinenko, N.F. Yudanov, N.A. Rudina, A.V. Ishchenko, P.P. Semyannikov, L.A. Sheludyakova, N.I. Alferova, A.I. Romanenko, O.B. Anikeev, Preparation of metal–polymer composites through the thermolysis of Fe(II), Co(II), and Ni(II) maleates. Inorg. Mater. 49, 1055–1060 (2013)CrossRefGoogle Scholar
  14. 14.
    N.P. Porolo, Z.G. Aliev, G.I. Dzhardimalieva, I.N. Ivleva, I.E. Uflyand, A.D. Pomogailo, N.S. Ovanesyan, Synthesis and reactivity of metal-containing monomers. Synthesis and structure of salts of unsaturated dicarboxylic acids. Russ. Chem. Bull. 46, 362–370 (1997)CrossRefGoogle Scholar
  15. 15.
    L.I. Yudanova, V.A. Logvinenko, L.A. Sheludyakova, N.F. Yudanov, G.N. Chekhova, N.I. Alferova, V.I. Alekseev, P.P. Semyannikov, V.I. Lisoivan, Thermal decomposition of solid solutions in systems of Fe(II), Co(II), and Ni(II) hydrogen maleates with the formation of bimetallic nanoparticles. Russ. J. Inorg. Chem. 53, 1459 (2008)CrossRefGoogle Scholar
  16. 16.
    I.E. Uflyand, G.I. Dzhardimalieva, Nanomaterials Preparation by Thermolysis of Metal Chelates (Springer, Cham, 2018)CrossRefGoogle Scholar
  17. 17.
    S.A. Semenov, VYu. Musatova, D.V. Drobot, G.I. Dzhardimalieva, Quantitative description of properties of nickel-containing nanocomposites affecting their magnetic characteristics. Russ. J. Inorg. Chem. 63, 1424–1426 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Badea, R. Olar, D. Marinescu, G. Vasile, Some new acrylate complexes as a criterion in their selection for further co-polymerization reaction. J. Therm. Anal. Calorim. 80, 683–685 (2005)CrossRefGoogle Scholar
  19. 19.
    C.-B. Liu, M.-X. Yu, X.-J. Zheng, L.-P. Jin, S. Gao, S.-Z. Lu, Structural change of supramolecular coordination polymers of itaconic acid and 1,10-phenanthroline along lanthanide series. Inorg. Chim. Acta 358, 2687–2696 (2005)CrossRefGoogle Scholar
  20. 20.
    G.V. Scaeteanu, M.C. Chifiriuc, C. Bleotu, C. Kamerzan, L. Marutescu, C.G. Daniliuc, C. Maxim, L. Calu, R. Olar, M. Badea, Synthesis, structural characterization, antimicrobial activity, and in vitro biocompatibility of new unsaturated carboxylate complexes with 2,2′-bipyridine. Molecules 23, 157 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Uhrinová, J. Kuchár, A. Orendáčová, M. Pitoňák, J. Federič, J. Noga, J. Černá, [Ni(bpy)(mal)(H2O)3]·H2O and [Ni(4,4′-dmbpy)(mal)(H2O)3]·1.5H2O: syntheses, crystal structures, magnetic properties, and computational study of stacking interactions. J. Coord. Chem. 70, 2999–3018 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Pavlová, J. Černák, K. Harm, Bis(2,2′-bipyridine-k 2 N,N’)(maleate-k 2 O 1 ,O 1′)nickel(II) 7.34-hydrate. Acta Crystallogr. Sect. E 64, m1536–m1537 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Li, X. Fu, C. Wang, Tri-aqua-(2,2′-bi-pyridine)maleatonickel(II) monohydrate. Acta Crystallogr. Sect. E 62, m865–m866 (2006)CrossRefGoogle Scholar
  24. 24.
    L. Wiehl, J. Schreuer, E. Haussühl, Crystal structure of triaqua-1,10-phenanthroline-nickel(II) maleate dihydrate, Ni(H2O)3(C12H8N2)(C4H2O4)·2H2O. Z. Kristallogr. - New Cryst. Struct. 223, 82–84 (2008)Google Scholar
  25. 25.
    Y.-Q. Zheng, J.-L. Lin, Z.-P. Kong, B.-Y. Chen, Self-assemblies of Ni(II) with phenanthroline and maleate anions: [Ni(H2O)3(phen)L].H2O (1) and [Ni(H2O)2(phen)L].2H2O (2) with H2L = maleic acid. J. Chem. Crystallogr. 32, 399–408 (2002)CrossRefGoogle Scholar
  26. 26.
    I.E. Uflyand, V.A. Zhinzhilo, L.S. Lapshina, A.A. Novikova, V.E. Burlakova, G.I. Dzhardimalieva, Conjugated thermolysis of metal chelate monomers based on cobalt acrylate complexes with polypyridyl ligands and tribological performance of nanomaterials obtained. ChemistrySelect 3, 8998–9007 (2018)CrossRefGoogle Scholar
  27. 27.
    H.-H. Zou, L. Wang, Z.-X. Long, Q.-P. Qin, Z.-K. Song, T. Xie, S.-H. Zhang, Y.-C. Liu, B. Lin, Z.-F. Chen, Preparation of 4-([2,2′:6′,2″-terpyridin]-4′-yl)-N, N-diethylaniline NiII and PtII complexes and exploration of their in vitro cytotoxic activities. Eur. J. Med. Chem. 108, 1–12 (2016)CrossRefGoogle Scholar
  28. 28.
    E.C. Constable, J. Lewis, M.C. Liptrot, P.R. Raithby, The coordination chemistry of 4′-phenyl-2,2′:6′,2″-terpyridine; the synthesis, crystal and molecular structures of 4′-phenyl-2,2′:6′,2″-terpyridine and bis(4′-phenyl-2,2′:6′,2″-terpyridine)nickel(II) chloride decahydrate. Inorg. Chim. Acta 178, 47–54 (1990)CrossRefGoogle Scholar
  29. 29.
    W.-W. Fu, Y.-Q. Li, Y. Liu, M.-S. Chen, W. Li, Y.-Q. Yang, An infinite two-dimensional hybrid water–chloride network in a 4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine nickel(II) matrix. Acta Cryst. E 73, 871–875 (2017)CrossRefGoogle Scholar
  30. 30.
    W.-W. Fu, D.-Z. Kuang, F.-X. Zhang, Y. Liu, W. Li, Y.-F. Kuang, Synthesis, crystal structure and properties of the nickel(II) 4′-(p-methoxy1pheny1)-2, 2′:6′,2″-terpyridine complex. Chin. J. Inorg. Chem. 29, 654–658 (2013)Google Scholar
  31. 31.
    J. McMurtrie, I. Dance, Crystal packing in metal complexes of 4′-phenylterpyridine and related ligands: occurrence of the 2D and 1D terpy embrace arrays. CrystEngComm 11, 1141–1149 (2009)CrossRefGoogle Scholar
  32. 32.
    W.-W. Fu, X. Shu, Y.-L. Luo, Z.-Q. Tang, Q. Li, H.-J. Liu, Q.-W. Cheng, H.-Y. Wang, Y. Liu, New Co(II) and Mn(II) complexes with 4′-substituted 2,2′:6′,2″-terpyridine ligands. J. Struct. Chem. 59, 398–410 (2018)CrossRefGoogle Scholar
  33. 33.
    Y.H. Lee, E. Kubota, A. Fuyuhiro, S. Kawata, J.M. Harrowfield, Y. Kim, S. Hayami, Synthesis, structure and luminescence properties of Cu(II), Zn(II) and Cd(II) complexes with 4′-terphenylterpyridine. Dalton Trans. 41, 10825–10831 (2012)CrossRefGoogle Scholar
  34. 34.
    B.N. Ghosh, F. Topić, P.K. Sahoo, P. Mal, J. Linnera, E. Kalenius, H.M. Tuononen, K. Rissanen, Synthesis, structure and photophysical properties of a highly luminescent terpyridine-diphenylacetylene hybrid fluorophore and its metal complexes. Dalton Trans. 44, 254–267 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Naik, S. Kumar, J.T. Mague, M.S. Balakrishna, A hybrid terpyridine-based bis(diphenylphosphino)amine ligand, terpy-C6H4N(PPh2)2: synthesis, coordination chemistry and photoluminescence studies. Dalton Trans. 45, 18434–18437 (2016)CrossRefGoogle Scholar
  36. 36.
    W.-W. Fu, F.-X. Zhang, D.-Z. Kuang, Y. Liu, Y.-Q. Yang, Syntheses, crystal structures and luminescence of zinc(II) and cadmium(II) complexes with 4′-substituted 2,2′:6′,2″-terpyridines. J. Coord. Chem. 68, 1177–1188 (2015)CrossRefGoogle Scholar
  37. 37.
    W.-W. Fu, Q. Huang, S.T. Liu, W.J. Wu, J.R. Shen, S.H. Li, Syntheses, crystal structures, and luminescence properties of Co(II), Ni(II) and Zn(II) complexes with 4′-(4-(Imidazol-1-Yl)phenyl)-2,2′:6′,2″-terpyridine. Russ. J. Coord. Chem. 43, 670–678 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Komatsu, K. Kato, Y. Yamamoto, H. Kamihata, Y.H. Lee, A. Fuyuhiro, S. Kawata, Spin-crossover behaviors based on intermolecular interactions for cobalt(II) complexes with long alkyl chains. Eur. J. Inorg. Chem. 2012, 2769–2775 (2012)CrossRefGoogle Scholar
  39. 39.
    Y. Zhang, K.L.M. Harriman, G. Brunet, A. Pialat, B. Gabidullin, M. Murugesu, Reversible redox, spin crossover, and superexchange coupling in 3d transition-metal complexes of bis-azinyl analogues of 2,2′:6′,2′′-terpyridine. Eur. J. Inorg. Chem. 2018, 1212–1223 (2018)CrossRefGoogle Scholar
  40. 40.
    M. Nakaya, R. Ohtani, J.W. Shin, M. Nakamura, L.F. Lindoy, S. Hayami, Abrupt spin transition in a modified-terpyridine cobalt(II) complex with a highly-distorted [CoN6] core. Dalton Trans. 47, 13809–13814 (2018)CrossRefGoogle Scholar
  41. 41.
    W.W. Fu, M.S. Chen, W. Li, Y. Liu, F.X. Zhang, D.Z. Kuang, Hydrothermal syntheses, crystal structures, and magnetic properties of three manganese(II) complexes based on 4′-substituted 2,2′:6′,2″-terpyridine ligands. Russ. J. Coord. Chem. 41, 247–254 (2015)CrossRefGoogle Scholar
  42. 42.
    V.D. Singh, R.S. Singh, R.P. Paitandi, B.K. Dwivedi, B. Maiti, D.S. Pandey, Solvent-dependent self-assembly and aggregation-induced emission in Zn(II) complexes containing phenothiazine-based terpyridine ligand and its efficacy in pyrophosphate sensing. J. Phys. Chem. C 122, 5178–5187 (2018)CrossRefGoogle Scholar
  43. 43.
    A. Sil, A. Maity, D. Giri, S.K. Patra, A phenylene–vinylene terpyridine conjugate fluorescent probe for distinguishing Cd2+ from Zn2+ with high sensitivity and selectivity. Sens. Actuators B 226, 403–411 (2016)CrossRefGoogle Scholar
  44. 44.
    K. Czerwińska, B. Machura, S. Kula, S. Krompiec, K. Erfurt, C. Roma-Rodrigues, A.R. Fernandes, L.S. Shulpina, N.S. Ikonnikov, G.B. Shulpin, Copper(II) complexes of functionalized 2,2′:6′,2″-terpyridines and 2,6-di(thiazol-2-yl)pyridine: structure, spectroscopy, cytotoxicity and catalytic activity. Dalton Trans. 46, 9591–9604 (2017)CrossRefGoogle Scholar
  45. 45.
    Z. Ma, L. Wei, E.C.B.A. Alegria, L.M.D.R.S. Martins, M.F.C. Guedes, A.J.L. Pombeiro, Synthesis and characterization of copper(II) 4′-phenyl-terpyridine compounds and catalytic application for aerobic oxidation of benzylic alcohols. Dalton Trans. 43, 4048–4058 (2014)CrossRefGoogle Scholar
  46. 46.
    Y.H. Budnikova, D.A. Vicic, A. Klein, Exploring mechanisms in Ni terpyridine catalyzed C–C cross-coupling reactions—a review. Inorganics 6, 18 (2018)CrossRefGoogle Scholar
  47. 47.
    D. Zych, A. Slodek, M. Matussek, M. Filapek, G. Szafraniec-Gorol, S. Krompiec, S. Kotowicz, M. Siwy, E. Schab-Balcerzak, K. Bednarczyk, M. Libera, K. Smolarek, S. Maćkowski, W. Danikiewicz, Highly luminescent 4′-(4-ethynylphenyl)-2,2′:6′,2″-terpyridine derivatives as materials for potential applications in organic light emitting diodes. ChemistrySelect 2, 8221–8233 (2017)CrossRefGoogle Scholar
  48. 48.
    A. Sil, S.R. Chowdhury, S. Mishra, S.K. Patra, Synthesis, structure, and photophysical and electrochemical properties of Ru(II) complexes of arylene–vinylene terpyridyl conjugates. Dalton Trans. 47, 9877–9888 (2018)CrossRefGoogle Scholar
  49. 49.
    U.S. Schubert, H. Hofmeier, G.R. Newkome, Modern Terpyridine Chemistry (Wiley, Weinheim, 2006)CrossRefGoogle Scholar
  50. 50.
    Y.-W. Zhong, C.-J. Yao, H.-J. Nie, Electropolymerized films of vinyl-substituted polypyridine complexes: synthesis, characterization, and applications. Coord. Chem. Rev. 257, 1357–1372 (2013)CrossRefGoogle Scholar
  51. 51.
    G.I. Dzhardimalieva, I.E. Uflyand, Review: recent advances in the chemistry of metal chelate monomers. J. Coord. Chem. 70, 1468–1527 (2017)CrossRefGoogle Scholar
  52. 52.
    G.I. Dzhardimalieva, I.E. Uflyand, Metal chelate monomers as precursors of polymeric materials. J. Inorg. Organomet. Polym Mater. 26, 1112–1173 (2016)CrossRefGoogle Scholar
  53. 53.
    G.I. Dzhardimalieva, I.E. Uflyand, Chemistry of Polymeric Metal Chelates (Springer, Cham, 2018)CrossRefGoogle Scholar
  54. 54.
    M. Wałęsa-Chorab, A.R. Stefankiewicz, A. Gorczyński, M. Kubicki, J. Kłak, M.J. Korabik, V. Patroniak, Structural, spectroscopic and magnetic properties of new copper(II) complexes with a terpyridine ligand. Polyhedron 30, 233–240 (2011)CrossRefGoogle Scholar
  55. 55.
    M. Wałęsa-Chorab, A.R. Stefankiewicz, D. Ciesielski, Z. Hnatejko, M. Kubicki, J. Kłak, M.J. Korabik, V. Patroniak, New mononuclear manganese(II) and zinc(II) complexes with a terpyridine ligand: structural, magnetic and spectroscopic properties. Polyhedron 30, 730–737 (2011)CrossRefGoogle Scholar
  56. 56.
    A. Gorczyński, M. Wałęsa-Chorab, M. Kubicki, M. Korabik, V. Patroniak, New complexes of 6,6″-dimethyl-2,2′:6′,2″-terpyridine with Ni(II) ions: synthesis, structure and magnetic properties. Polyhedron 77, 17–23 (2014)CrossRefGoogle Scholar
  57. 57.
    W.-W. Fu, J.-R. Shen, Z.-Q. Tang, Y.-Q. Peng, Q. Yi, Synthesis, crystal structure and magnetic property of a Ni(II) complex with 4′-(4-methoxyphenyl)-2,2′:6′,2″-terpyridine. Inorg. Nano-Met. Chem. 47, 1664–1667 (2017)CrossRefGoogle Scholar
  58. 58.
    C.-P. Zhang, H. Wang, A. Klein, C. Biewer, K. Stirnat, Y. Yamaguchi, L. Xu, V. Gomez-Benitez, D.A. Vicic, A five-coordinate nickel(II) fluoroalkyl complex as a precursor to a spectroscopically detectable Ni(III) species. J. Am. Chem. Soc. 135, 8141–8144 (2013)CrossRefGoogle Scholar
  59. 59.
    E.C. Constable, D. Phillips, P.R. Raithby, Nickel(II) chloride adducts of 4-phenyl-2,2:6,2″-terpyridine. Inorg. Chem. Commun. 5, 519–521 (2002)CrossRefGoogle Scholar
  60. 60.
    A.W. Addison, T.N. Rao, J. Reedijk, J. Van Rijn, G.C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 7, 1349–1356 (1984)CrossRefGoogle Scholar
  61. 61.
    Y.T. Jeon, J.Y. Moon, G.H. Lee, J. Park, Y. Chang, Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J. Phys. Chem. B 110, 1187–1191 (2006)CrossRefGoogle Scholar
  62. 62.
    A.D. Pomogailo, G.I. Dzhardimalieva, Controlled thermolysis of macromolecule-metal complexes as a way for synthesis of nanocomposites. Macromol. Symp. 317–318, 198–205 (2012)CrossRefGoogle Scholar
  63. 63.
    R.G. Chaudhuri, S. Paria, Core/shell nanoparticles. Chem. Rev. 112, 2373–2433 (2012)CrossRefGoogle Scholar
  64. 64.
    G.M. Sheldrick, SADABS. Program for Scanning and Correction of Area Detector Data (University of Göttingen, Germany, 2004)Google Scholar
  65. 65.
    G.M. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 71, 3–8 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistrySouthern Federal UniversityRostov-on-DonRussian Federation
  2. 2.Laboratory of MetallopolymersThe Institute of Problems of Chemical Physics RASChernogolovkaRussian Federation

Personalised recommendations