The Boron Nitride Nanotube, an Ideal Host Structure for Efficient Immobilization and Delivery of RNA Aptamer: Classical Molecular Dynamics Simulation

  • Mohaddeseh Habibzadeh MashatookiEmail author
  • Jaber Jahanbin Sardroodi
  • Alireza Rastkar Ebrahimzadeh


Boron nitride nanotubes (BNNTs) are nontoxic to health and environment due to their chemical inertness and structural stability. The BNNTs are more suitable for medical applications such as drug delivery. The adsorption and immobilization of RNA aptamer was studied using the molecular dynamics simulation at the temperature of 310 K. We have selected free (mobile) and fixed (12,12) and (40,40) bio-compatible BNNTs for this propose. After minimization, heating, equilibration and 60 ns production molecular dynamics simulation, it was found that the considered RNA aptamer was adsorbed and immobilized onto and inside of the BNNT surfaces. The structural parameters, including root-mean-square deviation and fluctuation, and the normalized number of hydrogen bonds between adsorbed aptamer and surrounded water molecules before and after adsorption, were measured and discussed. Besides, the ability of BNNT to carry the aptamer inside it was investigated. It was observed that the mobile BNNT can deliver RNA aptamer with no structural deformation. All the collected data are very promising, suggesting the enabling of BNNT exploitation in nano-medicine as nano-transducers and nano-carriers.

Graphical Abstract


Molecular dynamics Biocompatible nanotube Drug delivery Immobilization RNA aptamer 



This work has been supported by Azarbaijan Shahid Madani University.


  1. 1.
    R. Hong, N.O. Fischer, A. Verma, C.M. Goodman, T. Emrick, V.M. Rotello, Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J. Am. Chem. Soc. 126, 739 (2004)CrossRefGoogle Scholar
  2. 2.
    C.C. You, S.S. Agasti, M. De, M.J. Knapp, V.M. Rotello, Modulation of the catalytic behavior of alpha-chymotrypsin at monolayer-protected nanoparticle surfaces. J. Am. Chem. Soc. 128, 14612 (2006)CrossRefGoogle Scholar
  3. 3.
    R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim, Y.M. Li, W. Kim, P. Utz, H. Dai, Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U.S.A. 100, 4984 (2003)CrossRefGoogle Scholar
  4. 4.
    R.J. Chen, Y.G. Zhang, D.W. Wang, H.J. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838 (2001)CrossRefGoogle Scholar
  5. 5.
    Y. Kang, Y.C. Liu, Q. Wang, J.W. Shen, T. Wu, W. Guan, On the spontaneous encapsulation of proteins in carbon nanotubes. J. Biomater. 30, 2807 (2009)CrossRefGoogle Scholar
  6. 6.
    D. Pantarotto, C.D. Partidos, R. Graff, J. Hoebeke, J.P. Briand, M. Prato, A. Bianco, Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125, 6160 (2003)CrossRefGoogle Scholar
  7. 7.
    S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, C.M. Lieber, Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52 (1998)CrossRefGoogle Scholar
  8. 8.
    Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Sajjad, V. Makarov, A. Aldalbahi, P.X. Feng, B.R. Weiner, G. Morel, Synthesis micro-scale boron nitride nanotubes at low substrate temperature. AIP Adv. 6, 075110 (2016). CrossRefGoogle Scholar
  10. 10.
    X. Chen, L. Zhang, C. Park, C.C. Fay, X. Wang, C. Ke, Mechanical strength of boron nitride nanotube-polymer interfaces. Appl. Phys. Lett. 107, 253105 (2015). CrossRefGoogle Scholar
  11. 11.
    S. Ghosh, S. Nigam, G.P. Das, C. Majumdar, Novel properties of boron nitride nanotubes encapsulated with Fe Co, and Ni nanoclusters. J. Chem. Phys. 132, 164704 (2010). CrossRefGoogle Scholar
  12. 12.
    M.L. Cohen, A. Zettl, The physics of boron nitride nanotubes. Phys. Today 63, 34 (2010)CrossRefGoogle Scholar
  13. 13.
    Q. Weng, B. Wang, X. Wang et al., Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano 8, 6123–6130 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Quasi particle band structure of bulk hexagonal boron nitride and related systems. Phys. Rev. B 51, 6868–6875 (1995). CrossRefGoogle Scholar
  15. 15.
    Y. Chen, J. Zou, S.J. Campbell, G. LeCaer, Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004). CrossRefGoogle Scholar
  16. 16.
    W. Sekkal, B. Bouhafs, H. Aourag, M. Certier, Molecular-dynamics simulation of structural and thermodynamic properties of boronnitride. J. Phys.: Condens. Matter 10, 4975–4984 (1998). Google Scholar
  17. 17.
    M. Santosh, P. Maiti, A.K. Sood, Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. J. Nanosci. Nanotechnol. 9, 5425–5430 (2009). CrossRefGoogle Scholar
  18. 18.
    N.M. AnoopKrishnan, D. Ghosh, Chirality dependent elastic properties of single-walled boron nitride nanotubes under uniaxial and torsional loading. J. Appl. Phys. 115, 5–6 (2014). CrossRefGoogle Scholar
  19. 19.
    K.B. Dhungana, R. Pati, Boron nitride nanotubes for spintronics. J. Sens. 14, 17655–17685 (2014)CrossRefGoogle Scholar
  20. 20.
    D. Golberg, Y. Bando, C.C. Tang, C.Y. Zhi, Boron nitride nanotubes. Adv. Mater. 19, 2413–2432 (2007). CrossRefGoogle Scholar
  21. 21.
    V. Choyal, V.K. Choyal, S.I. Kundalwa, Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: a comprehensive computational study. Comput. Mater. Sci. 156, 332–345 (2019)CrossRefGoogle Scholar
  22. 22.
    G. Ciofani, S. Danti, S. Nitti et al., Biocompatibility of boron nitride nanotubes: an up-date of in vivo toxicological investigation. Int. J. Pharm. 444, 85–88 (2013)CrossRefGoogle Scholar
  23. 23.
    G. Ciofani, Potential applications of boron nitride nanotubes as drug delivery systems. Expert Opin. Drug Deliv. 7, 889–893 (2010)CrossRefGoogle Scholar
  24. 24.
    C. Gianni, R. Vittoria, Y. Jun et al., Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery. Curr. Nanosci. 5, 33–38 (2009)CrossRefGoogle Scholar
  25. 25.
    S. Kalay, Z. Yilmaz, O. Sen et al., Synthesis of boron nitride nanotubes and their applications. Beilstein J. Nanotechnol. 6, 84–102 (2015)CrossRefGoogle Scholar
  26. 26.
    W. Xuebin, Z. Chunyi, W. Qunhong et al., Boron nitride nanosheets: novel syntheses and applications in polymeric composites. J. Phys: Conf. Ser. 471, 012003 (2013)Google Scholar
  27. 27.
    Y. Kinoshita, N. Ohno, Electronic structures of boron nitride nanotubes subjected to tension, torsion, and flattening: a first-principles DFT study. Phys. Rev. B 82, 1–6 (2010). CrossRefGoogle Scholar
  28. 28.
    Y.H. Kim, K.J. Chang, S.G. Louie, Electronic structure of radially deformed BN and BC3 nanotubes. Phys. Rev. B 63, 1–5 (2001). Google Scholar
  29. 29.
    M.G. Mashapa, N. Chetty, S.S. Ray, Ab Initio studies of vacancies in (8,0)and(8,8) single walled carbon and boron nitride nanotubes. J. Nanosci. Nanotechnol. 12, 7030–7036 (2012). CrossRefGoogle Scholar
  30. 30.
    V. Soto-Verdugo, H. Metiu, E. Gwinn, The properties of small Ag clusters bound to DNA bases. J. Chem. Phys. 132, 195102 (2010)CrossRefGoogle Scholar
  31. 31.
    C.M. Chang, A.F. Jalbout, Metal induced amino acid adsorption on nanotubes. Thin Solid Films 518, 2070–2076 (2010)CrossRefGoogle Scholar
  32. 32.
    S. Mukhopadhyay, S. Gowtham, R.H. Scheicher, R. Pandey, S.P. Karna, Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Nanotechnology 21, 165703 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Mukhopadhyay, R.H. Scheichert, R. Pandey, S.P. Karma, Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J. Phys. Chem. Lett. 2(19), 2442–2447 (2011)CrossRefGoogle Scholar
  34. 34.
    R.S. Kane, A.D. Stroock, Nanobiotechnology: protein-nanomaterial interactions. Biotechnol. Prog. 23, 316 (2007)CrossRefGoogle Scholar
  35. 35.
    J. Yu, Y. Chen, B.M. Cheng, Dispersion of boron nitride nanotubes in aqueous solution with the help of ionic surfactants. Solid State Commun. 149, 763 (2009)CrossRefGoogle Scholar
  36. 36.
    N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269, 966 (1995)CrossRefGoogle Scholar
  37. 37.
    X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C.R. Bertozzi, Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131, 890 (2009)CrossRefGoogle Scholar
  38. 38.
    J.A. Nash, T.L. Tucker, W. Therriault, Y.G. Yingling, Binding of single stranded nucleic acids to cationic ligand functionalized gold nanoparticles. Biointerphases 11(4), 04B305 (2016)CrossRefGoogle Scholar
  39. 39.
    M.H. Mashatooki, A.R. Ebrahimzadeh, J.J. Sardroodi, A. Abbasi, Investigation of TiO2 anatase (1 0 1), (1 0 0) and (1 1 0) facets as immobilizer for a potential anticancer RNA aptamer: a classical molecular dynamics simulation. Mol. Simul. (2019). Google Scholar
  40. 40.
    K. Germer, M. Leonard, X. Zhang, RNA aptamers and their therapeutic and diagnostic applications. Int. J. Biochem. Mol. Biol 4(1), 27–40 (2013)Google Scholar
  41. 41.
    P. Anker, H. Mulcahy, X.Q. Chen, M. Stroun, Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev. 18, 65–73 (1999)CrossRefGoogle Scholar
  42. 42.
    N.S. Que-Gewirth, B.A. Sullenger, Gene therapy progress and prospects: RNA aptamers. Gene Ther. 14, 283–291 (2007)CrossRefGoogle Scholar
  43. 43.
    D.B. Huang, D. Vu, L.A. Cassiday, J.M. Zimmerman, L.J. Maher III, G. Ghosh, Crystal structure of NF-kappaB (p50)2 complexed to a high-affinity RNA aptamer. Proc. Natl. Acad. Sci. U.S.A. 100, 9268–9273 (2003)CrossRefGoogle Scholar
  44. 44.
    C.P. Rusconi, J.D. Roberts, G.A. Pitoc, S.M. Nimjee, R.R. White, G. Quick Jr. et al., Antidote-mediated control of an anticoagulant aptamer in vivo. Nat. Biotechnol. 22, 1423–1428 (2004)CrossRefGoogle Scholar
  45. 45.
    J.M. Healy, S.D. Lewis, M. Kurz, R.M. Boomer, K.M. Thompson, C. Wilson et al., Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21, 2234–2246 (2004)CrossRefGoogle Scholar
  46. 46.
    S. Santulli-Marotto, S.K. Nair, C. Rusconi, B. Sullenger, E. Gilboa, Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res. 63, 7483–7489 (2003)Google Scholar
  47. 47.
    X. Yu, S. Ghamande, H. Liu, L. Xue, S. Zhao, W. Tan, L. Zhao, S.C. Tang, D. Wu, H. Korkaya, N.J. Maihle, H.Y. Liu, Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2 + breast cancer. Mol. Ther. 10, 317–330 (2018). Google Scholar
  48. 48.
    V. Romanucci, A. Zarrelli, S. Liekens, S. Noppen, C. Pannecouque, G. Di Fabio, New findings on the d(TGGGAG) sequence: surprising anti-HIV-1 activity. Eur. J. Med. Chem. 145, 425–430 (2018). CrossRefGoogle Scholar
  49. 49.
    J. Bala, S. Chinnapaiyan, R.K. Dutta, H. Unwalla, Aptamers in HIV research diagnosis and therapy. RNA Biol. 15, 327–337 (2018). CrossRefGoogle Scholar
  50. 50.
    J.L. Henri, J. Macdonald, M. Strom, W. Duan, S. Shigdar, Aptamers as potential therapeutic agents for ovarian cancer. Biochimie 145, 34–44 (2018). CrossRefGoogle Scholar
  51. 51.
    A. Bouvier-Müller, F. Ducongé, Nucleic acid aptamers for neurodegenerative diseases. Biochimie 145, 73–83 (2018). CrossRefGoogle Scholar
  52. 52.
    J.I. Jung, S.R. Han, S.W. Lee, Development of RNA aptamer that inhibits methyltransferase activity of dengue virus. Biotechnol. Lett. 40, 315–324 (2018). CrossRefGoogle Scholar
  53. 53.
    M. Chakravarthy, H. AlShamaileh, H. Huang, R.K. Tannenberg, S. Chen, S. Worrall, P.R. Dodd, R.N. Veedu, Development of DNA aptamers targeting low-molecular-weight amyloid-β peptide aggregates in vitro. Chem. Commun. 54, 4593–4596 (2018). CrossRefGoogle Scholar
  54. 54.
    M.H. Mashatooki, J.J. Sardroodi, A.R. Ebrahimzadeh, Molecular dynamics investigation of the interactions between RNA aptamer and graphene-monoxide/boron-nitride surfaces: applications to novel drug delivery systems. J. Inorg. Organomet. Polym. (2019). Google Scholar
  55. 55.
    W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). CrossRefGoogle Scholar
  56. 56.
    N. Li, H.H. Nguyen, M. Byrom, A.D. Ellington, Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS ONE 6, e20299 (2011)CrossRefGoogle Scholar
  57. 57.
    A. Xayaphoummine, T. Bucher, H. Isambert, Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33, W605–W610 (2005). CrossRefGoogle Scholar
  58. 58.
    M. Magnus, M.J. Boniecki, W. Dawson, J.M. Bujnicki, SimRNAweb: a web server for RNA 3D structure modeling with optional restraints. Nucleic Acids Res. 44, 315–319 (2016). CrossRefGoogle Scholar
  59. 59.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). CrossRefGoogle Scholar
  60. 60.
    K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, A.D. Mackerell, CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. (2009). Google Scholar
  61. 61.
    J. Lee, X. Cheng et al., CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12(1), 405–413 (2016). CrossRefGoogle Scholar
  62. 62.
    P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960 (2001)CrossRefGoogle Scholar
  63. 63.
    S.G. Lambroks, P. Boris, E.S. Oran, I. Chandrasekhar, M. Nagumo, A modified shake algorithm for maintaining rigid bonds in molecular dynamics simulations of large molecules. J. Comput. Phys. 85, 473–486 (1989)CrossRefGoogle Scholar
  64. 64.
    S.E. Feller, Y. Zhang, R.W. Pastor, B.R. Brooks, Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613 (1995)CrossRefGoogle Scholar
  65. 65.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequi-Librium Statistical Mechanics, 2nd edn. (Springer, New York, 1991)CrossRefGoogle Scholar
  66. 66.
    D.A. McQuarrie, Statistical Thermodynamics (University Science Books, Sausalito, 1984)Google Scholar
  67. 67.
    J. Azamat, J.J. Sardroodi, A. Rastkar, Molecular dynamics simulation of ion separation and water transport trough boron nitride nanotubes. Desalin. Water Treat. 56, 1090–1098 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohaddeseh Habibzadeh Mashatooki
    • 1
    • 2
    • 3
    Email author
  • Jaber Jahanbin Sardroodi
    • 1
    • 2
    • 3
  • Alireza Rastkar Ebrahimzadeh
    • 1
    • 2
    • 4
  1. 1.Molecular Simulation Laboratory (MSL)Azarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Computational Nanomaterials Research Group (CNRG)Azarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Department of Chemistry, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
  4. 4.Department of Physics, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations