Advertisement

Synthesis and Characterization of CdTiO3@S Composite: Investigation of Photocatalytic Activity for the Degradation of Crystal Violet Under Sun Light

  • Tayebeh Tavakoli-Azar
  • Ali Reza MahjoubEmail author
  • Mirabdullah Seyed Sadjadi
  • Nazanin Farhadyar
  • Moayad Hossaini Sadr
Article
  • 2 Downloads

Abstract

CdTiO3 was synthesized by hydrothermal method at low temperature of 180 °C for 24 h. CdTiO3@S composite with plate-like morphology was synthesized by mixing CdTiO3 and S powder under post-annealing at 600 °C for 2 h. The as-synthesized samples were investigated by techniques XRD, FE-SEM, EDS, TEM, FT-IR, TG-DSC, BET. The results showed that the synthesized of CdTiO3@S composite has led to the creation of defects and skew deviations in crystalline lattice. Optical properties and photocatalytic activity were studied using DRS and UV–Vis spectrophotometer. UV–Vis DRS indicated absorption peaks extended towards visible region. Band gap energy values were determined by Tauc plot for direct transitions which the values of 3.28 eV and 2.75 eV were obtained for CdTiO3 and CdTiO3@S respectively. Photocatalyst performance of CdTiO3 and CdTiO3@S were carried out for the degradation of crystal violet (CV) under natural sunlight. The results showed that the degradation efficiency of CdTiO3@S composite (99%) was better than that of pure CdTiO3 (35%), which is due to the presence of narrow band gap energy of CdTiO3@S. The effect of examining different photocatalytic parameters indicated that, photocatalytic activity of CdTiO3@S composite increases with decreasing CV dye concentration, increasing the photocatalyst dosage and in acidic pH. Kinetics studies have shown that the degradation of CV by the as-synthesized of photocatalysts follows the pseudo-first-order kinetics and the rate constant achieved for CdTiO3@S (k = 76.10−4 min−1) was much greater than of CdTiO3 (k = 4.10−4 min−1).

Keywords

CdTiO3@S Crystal violet Photocatalyst Hydrothermal Degradation Sunlight 

Notes

References

  1. 1.
    G. Sharma, B. Thakur, M. Naushad, H. Alaa, A. Kumar, M. Sillanpaa, G.T. Mola, Fabrication and characterization of sodium dodecyl sulphate@ ironsilicophosphate nanocomposite: Ion exchange properties and selectivity for binary metal ions. Mater. Chem. Phys. 193, 129–139 (2017)CrossRefGoogle Scholar
  2. 2.
    G. Sharma, A. Kumar, K. Devi, S. Sharma, M. Naushad, A.A. Ghfar, T. Ahamad, F.J. Stadler, Guar gum-crosslinked-Soya lecithin nanohydrogel sheets as effective adsorbent for the removal of thiophanate methyl fungicide. Int. J. Biol. Macromol. 114, 295–305 (2018)CrossRefGoogle Scholar
  3. 3.
    N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, P. Vaziri, Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13, 12242–12258 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Kumar, A. Kumar, G. Sharma, M. Naushad, R.C. Veses, A.A. Ghfar, F.J. Stadler, M.R. Khan, Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO 2 conversion using sustainable coal-char/polymeric-gC 3 N 4/RGO metal-free nano-hybrids. New J. Chem. 41, 10208–10224 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Li, W. Zhang, L. Li, C. Yi, H. Lv, Q. Song, Litchi-like CdS/CdTiO 3–TiO 2 composite: synthesis and enhanced photocatalytic performance for crystal violet degradation and hydrogen production. RSC Adv. 6, 51374–51386 (2016)CrossRefGoogle Scholar
  6. 6.
    K.M. Lee, S.B.A. Hamid, C.W. Lai, Mechanism and kinetics study for photocatalytic oxidation degradation: a case study for phenoxyacetic acid organic pollutant. J. Nanomater. 2015, 9 (2015)Google Scholar
  7. 7.
    F. Petronella, A. Truppi, C. Ingrosso, T. Placido, M. Striccoli, M. Curri, A. Agostiano, R. Comparelli, Nanocomposite materials for photocatalytic degradation of pollutants. Catal. Today 281, 85–100 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Talebi, Novel silver-doped cadmium titanate: synthesis, characterization, and its photovoltaic application. J. Mater. Sci.: Mater. Electron. 27, 6359–6363 (2016)Google Scholar
  9. 9.
    M.-N.T. Tran, H.-Y.T. Quach, Q.V. Nguyen, T.-D. Nguyen, D.-T. On, Synthesis of perovskite-based nanocomposites for deNO x catalytic activity. Can. J. Chem. 94, 215–220 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Sivakumar, A. Selvaraj, A.K. Ramasamy, Photocatalytic degradation of organic reactive dyes over MnTiO3/TiO2 heterojunction composites under UV-Visible irradiation. Photochem. Photobiol. 89, 1047–1056 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Bradha, T. Vijayaraghavan, S. Suriyaraj, R. Selvakumar, A.M. Ashok, Synthesis of photocatalytic La (1–x) AxTiO3. 5–δ (A = Ba, Sr, Ca) nano perovskites and their application for photocatalytic oxidation of congo red dye in aqueous solution. J. Rare Earths 33, 160–167 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Bumajdad, M. Madkour, Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Phys. Chem. Chem. Phys. 16, 7146–7158 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Sharma, S. Bhogal, M. Naushad, A. Kumar, F.J. Stadler, Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants. J. Photochem. Photobiol., A 347, 235–243 (2017)CrossRefGoogle Scholar
  14. 14.
    G. Sharma, A. Kumar, M. Naushad, A. Kumar, H. Ala’a, P. Dhiman, A.A. Ghfar, F.J. Stadler, M. Khan, Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites. J. Clean. Prod. 172, 2919–2930 (2018)CrossRefGoogle Scholar
  15. 15.
    G. Sharma, V.K. Gupta, S. Agarwal, S. Bhogal, M. Naushad, A. Kumar, F.J. Stadler, Fabrication and characterization of trimetallic nano-photocatalyst for remediation of ampicillin antibiotic. J. Mol. Liq. 260, 342–350 (2018)CrossRefGoogle Scholar
  16. 16.
    H. He, W. Dong, G. Zhang, Photodegradation of aqueous methyl orange on MnTiO 3 powder at different initial pH. Res. Chem. Intermed. 36, 995–1001 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Cao, X. Huang, Y. Liu, J. Wu, Y. Ji, Enhanced photocatalytic activity of SrTiO3 photocatalyst by topotactic preparation. Mater Res Express 3, 115903 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Kappadan, T.W. Gebreab, S. Thomas, N. Kalarikkal, Tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process. 51, 42–47 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Liu, Y. Qu, R. Li, G. Wang, Y. Li, Photocatalytic activity of MTiO 3 (M = Ca, Ni, and Zn) nanocrystals for water decomposition to hydrogen. J. Mater. Res. 29, 1295–1301 (2014)CrossRefGoogle Scholar
  20. 20.
    T. Baran, S. Wojtyła, A. Vertova, A. Minguzzi, S. Rondinini, Photoelectrochemical and photocatalytic systems based on titanates for hydrogen peroxide formation. J. Electroanal. Chem. 808, 395–402 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Phani, S. Santucci, Microwave irradiation as an alternative source for conventional annealing: a study of pure TiO2, NiTiO3, CdTiO3 thin films by a sol–gel process for electronic applications. J. Phys. 18, 6965 (2006)Google Scholar
  22. 22.
    C. Karunakaran, A. Vijayabalan, Electrical and optical properties of polyethylene glycol-assisted sol–gel solid state reaction-synthesized nanostructured CdTiO3. Mater. Sci. Semicond. Process. 16, 1992–1996 (2013)CrossRefGoogle Scholar
  23. 23.
    P. Dhivya, A.K. Prasad, M. Sridharan, Nanostructured perovskite CdTiO3 films for methane sensing. Sens. Actuators, B 222, 987–993 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Rahnamaeiyan, S. Khademolhoseini, Preparation and characterization of cadmium titanate nanoparticles via novel sol–gel method and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27, 6043–6047 (2016)Google Scholar
  25. 25.
    M.A. Ehsan, H. Khaledi, A. Pandikumar, N.M. Huang, Z. Arifin, M. Mazhar, Dye sensitized solar cell applications of CdTiO 3–TiO 2 composite thin films deposited from single molecular complex. J. Solid State Chem. 230, 155–162 (2015)CrossRefGoogle Scholar
  26. 26.
    Z. Imran, M. Rafiq, M. Ahmad, K. Rasool, S. Batool, M. Hasan, Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats. AIP Adv. 3, 032146 (2013)CrossRefGoogle Scholar
  27. 27.
    S. Mayén-Hernández, J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Pérez, J. Márquez-Marín, J. Mendoza-Alvarez, O. Zelaya-Angel, CdTiO3 thin films prepared by sol–gel method using a simpler route. Surf. Coat. Technol. 200, 3567–3572 (2006)CrossRefGoogle Scholar
  28. 28.
    L.Y. Yang, G.P. Feng, T.X. Wang, J.M. Zhang, T.J. Lou, Low temperature preparation and characterization of CdTiO3 nanoplates. Mater. Lett. 65, 2601–2603 (2011)CrossRefGoogle Scholar
  29. 29.
    T. Acharya, R. Choudhary, Development of ilmenite-type electronic material CdTi0 3 for devices. IEEE Trans. Dielectr. Electr. Insul. 22, 3521–3528 (2015)CrossRefGoogle Scholar
  30. 30.
    R. Bahloul, S. Sayouri, K. Limame, M.M. Yahyaoui, B. Jaber, L. Laanab, Temperature effect on the structural and the optical properties of sol gel CdTiO3 nanopowders. J. Ceram. Process. Res. 18, 329–335 (2017)Google Scholar
  31. 31.
    M. Kharkwal, S. Uma, R. Nagarajan, Synthesis and optical properties of pure CdTiO 3 and Ni 2 + and Zn 2 + ion substituted CdTiO 3 obtained by a novel precursor route. Indian J. Chem. A 51(11), 1538–1544 (2012)Google Scholar
  32. 32.
    S. Fareed, A. Jamil, M. Rafiq, F. Sher, Zinc modified cadmium titanite nanoparticles: electrical and room temperature methanol sensing properties. Ceram. Int. 44, 4751–4757 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Piskunov, O. Lisovski, J. Begens, D. Bocharov, Y.F. Zhukovskii, M. Wessel, E. Spohr, C-, N-, S-, and Fe-doped TiO2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting: prediction from first principles. J. Phys. Chem. C 119, 18686–18696 (2015)CrossRefGoogle Scholar
  34. 34.
    F.-F. Li, D.-R. Liu, G.-M. Gao, B. Xue, Y.-S. Jiang, Improved visible-light photocatalytic activity of NaTaO3 with perovskite-like structure via sulfur anion doping. Appl. Catal. B 166, 104–111 (2015)CrossRefGoogle Scholar
  35. 35.
    D.-R. Liu, Y.-S. Jiang, G.-M. Gao, Photocatalytic degradation of an azo dye using N-doped NaTaO3 synthesized by one-step hydrothermal process. Chemosphere 83, 1546–1552 (2011)CrossRefGoogle Scholar
  36. 36.
    P.C. Huynh, V.M. Le, Adsorptive and photocatalytic properties of S-doped SrTiO3 under simulated solar irradiation. In AIP Conference Proceedings, vol. 1878 (AIP Publishing, 2017), p. 020012)Google Scholar
  37. 37.
    Z.H. Shah, Y. Ge, X. Lin, J. Xiu, S. Zhang, R. Lu, Chloride capping of CdTiO 3 for higher crystallinity and enhanced photocatalytic activity. Phys. Chem. Chem. Phys. 18, 1637–1643 (2016)CrossRefGoogle Scholar
  38. 38.
    M.R. Gholipour, C.-T. Dinh, F. Béland, T.-O. Do, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7, 8187–8208 (2015)CrossRefGoogle Scholar
  39. 39.
    M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Simple morphology-controlled fabrication of CdTiO 3 nanoparticles with the aid of different capping agents. J. Mater. Sci.: Mater. Electron. 27, 13294–13299 (2016)Google Scholar
  40. 40.
    A. Tadjarodi, H. Kerdari, M. Imani, Synthesis, characterization and adsorption capability of CdO microstructure for congo red from aqueous solution. J. Nanostruct. 2, 9–17 (2012)Google Scholar
  41. 41.
    M.A. Habib, M. Muslim, M.T. Shahadat, M.N. Islam, I.M.I. Ismail, T.S.A. Islam, A.J. Mahmood, Photocatalytic decolorization of crystal violet in aqueous nano-ZnO suspension under visible light irradiation. J. Nanostruct. Chem. 3, 70 (2013)CrossRefGoogle Scholar
  42. 42.
    S.J. Darzi, A. Mahjoub, S. Sarfi, Visible-light-active nitrogen doped TiO2 nanoparticles prepared by sol–gel acid catalyzed reaction. Iran. J. Mater. Sci. Eng. 9, 17–23 (2012)Google Scholar
  43. 43.
    Y.V. Kabirov, B. Kulbuzhev, M. Kupriyanov, Structure formation and phase transitions in cadmium titanate. J. Struct. Chem. 42, 815–819 (2001)CrossRefGoogle Scholar
  44. 44.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO 3 nanoparticles by Pechini sol–gel method. J. Mater. Sci.: Mater. Electron. 28, 14965–14973 (2017)Google Scholar
  45. 45.
    M.S. Hassan, T. Amna, M.-S. Khil, Synthesis of high aspect ratio CdTiO3 nanofibers via electrospinning: characterization and photocatalytic activity. Ceram. Int. 40, 423–427 (2014)CrossRefGoogle Scholar
  46. 46.
    H. Wang, X. Zhang, A. Huang, H. Xu, M. Zhu, B. Wang, H. Yan, M. Yoshimura, A new phase of cadmium titanate by hydrothermal method. J. Cryst. Growth 246, 150–154 (2002)CrossRefGoogle Scholar
  47. 47.
    X. Zhang, H. Wang, A. Huang, H. Xu, Y. Zhang, D. Yu, B. Wang, H. Yan, Synthesis of cadmium titanate powders by a sol-gel-hydrothermal method. J. Mater. Sci. 38, 2353–2356 (2003)CrossRefGoogle Scholar
  48. 48.
    Y.K. Sharma, M. Kharkwal, S. Uma, R. Nagarajan, Synthesis and characterization of titanates of the formula MTiO3 (M = Mn, Fe Co, Ni and Cd) by co-precipitation of mixed metal oxalates. Polyhedron 28, 579–585 (2009)CrossRefGoogle Scholar
  49. 49.
    S. Chauhan, M. Arora, P. Sati, S. Chhoker, S. Katyal, M. Kumar, Structural, vibrational, optical, magnetic and dielectric properties of Bi1 − xBaxFeO3 nanoparticles. Ceram. Int. 39, 6399–6405 (2013)CrossRefGoogle Scholar
  50. 50.
    X. Hui-min, D. Yi-quan, Z. Jiang, C. Xi, Structural, magnetic and optical properties of BiFe 1-x Nb x O 3. Chin. J. Chem. Phys. 29, 578–584 (2016)CrossRefGoogle Scholar
  51. 51.
    H. Hayashi, Y. Hakuta, Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3, 3794–3817 (2010)CrossRefGoogle Scholar
  52. 52.
    M. Marefati, M. Mehrpooya, M.B. Shafii, Optical and thermal analysis of a parabolic trough solar collector for production of thermal energy in different climates in Iran with comparison between the conventional nanofluids. J. Clean. Prod. 175, 294–313 (2018)CrossRefGoogle Scholar
  53. 53.
    L. Fayoumi, M. Ezzedine, H. Akel, M. El Jamal, Kinetic study of the degradation of crystal violet by K2S2O8. Comparison with malachite green. Port. Electrochim. Acta 30, 121–133 (2012)CrossRefGoogle Scholar
  54. 54.
    J.-Z. Kong, A.-D. Li, H.-F. Zhai, H. Li, Q.-Y. Yan, J. Ma, D. Wu, Preparation, characterization and photocatalytic properties of ZnTiO3 powders. J. Hazard. Mater. 171, 918–923 (2009)CrossRefGoogle Scholar
  55. 55.
    C. Manjunatha, B. Nagabhushana, H. Nagabhushana, R. Chakradhar, Transformation of hydrothermally derived nanowire cluster intermediates into CdSiO 3 nanobelts. J. Mater. Chem. 22, 22392–22397 (2012)CrossRefGoogle Scholar
  56. 56.
    F. Wang, F. Li, L. Zhang, H. Zeng, Y. Sun, S. Zhang, X. Xu, S-TiO2 with enhanced visible-light photocatalytic activity derived from TiS2 in deionized water. Mater. Res. Bull. 87, 20–26 (2017)CrossRefGoogle Scholar
  57. 57.
    R. Ashiri, Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process. Vib. Spectrosc. 66, 24–29 (2013)CrossRefGoogle Scholar
  58. 58.
    S.-H. Nam, T.K. Kim, J.-H. Boo, Physical property and photo-catalytic activity of sulfur doped TiO2 catalysts responding to visible light. Catal. Today 185, 259–262 (2012)CrossRefGoogle Scholar
  59. 59.
    J. Gardy, A. Hassanpour, X. Lai, M.H. Ahmed, Synthesis of Ti (SO4) O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl. Catal. A 527, 81–95 (2016)CrossRefGoogle Scholar
  60. 60.
    S. Kumar, J. Sharma, Stable phase CdS nanoparticles for optoelectronics: a study on surface morphology, structural and optical characterization. Mater. Sci. Pol. 34, 368–373 (2016)CrossRefGoogle Scholar
  61. 61.
    R. Karthik, J.V. Kumar, S.-M. Chen, P.S. Kumar, V. Selvam, V. Muthuraj, A selective electrochemical sensor for caffeic acid and photocatalyst for metronidazole drug pollutant-A dual role by rod-like SrV 2 O 6. Sci. Rep. 7, 7254 (2017)CrossRefGoogle Scholar
  62. 62.
    A. Schleife, P. Rinke, F. Bechstedt, C.G. Van de Walle, Enhanced optical absorption due to symmetry breaking in TiO2 (1–x) S2 x alloys. J. Phys. Chem. C 117, 4189–4193 (2013)CrossRefGoogle Scholar
  63. 63.
    K.H. Abass, Fe2O3 thin films prepared by spray pyrolysis technique and study the annealing on its optical properties. Int. Lett. Chem. Phys. Astron. 6, 24–31 (2015)CrossRefGoogle Scholar
  64. 64.
    I. Ali, A. Iqbal, A. Mahmood, A. Shah, M. Zakria, A. Ali, Optical spectroscopic analysis of annealed Cd1 − xZnxSe thin films deposited by close space sublimation technique. Mater. Sci. Pol. 34, 828–833 (2016)CrossRefGoogle Scholar
  65. 65.
    B. Lokesh, N.M. Rao, Effect of Cu-doping on structural, optical and photoluminescence properties of zinc titanates synthesized by solid state reaction. J. Mater. Sci.: Mater. Electron. 27, 4253–4258 (2016)Google Scholar
  66. 66.
    S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, Chalcogenide perovskites–an emerging class of ionic semiconductors. Nano Energy 22, 129–135 (2016)CrossRefGoogle Scholar
  67. 67.
    A. Kumar, G. Pandey, A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J. 1, 106–114 (2017)Google Scholar
  68. 68.
    A. Tadjarodi, M. Imani, H. Kerdari, K. Bijanzad, D. Khaledi, M. Rad, Preparation of CdO rhombus-like nanostructure and its photocatalytic degradation of azo dyes from aqueous solution. Nanomater. Nanotechnol. 4, 4–16 (2014)CrossRefGoogle Scholar
  69. 69.
    H. Atout, A. Bouguettoucha, D. Chebli, J. Gatica, H. Vidal, M.P. Yeste, A. Amrane, Integration of adsorption and photocatalytic degradation of methylene blue using $$\hbox TiO _ 2 $$ supported on granular activated carbon. Arab. J. Sci. Eng. 42, 1475–1486 (2017)CrossRefGoogle Scholar
  70. 70.
    Y. Miyah, A. Lahrichi, M. Idrissi, K. Anis, R. Kachkoul, N. Idrissi, S. Lairini, V. Nenov, F. Zerrouq, Removal of cationic dye “crystal violet” in aqueous solution by the local clay. J. Mater. Environ. Sci. 8, 3570–3582 (2017)Google Scholar
  71. 71.
    P. Vaziri, M. Navasery, A. Abedini, G. Bahmanrokh, M. Erfani, M.Z. Hussein, E. Saion, N. Soltani, Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13, 12242–12258 (2012)CrossRefGoogle Scholar
  72. 72.
    X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12, 143 (2017)CrossRefGoogle Scholar
  73. 73.
    J.M. Berg, A. Romoser, N. Banerjee, R. Zebda, C.M. Sayes, The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology 3, 276–283 (2009)CrossRefGoogle Scholar
  74. 74.
    J.D. Clogston, A.K. Patri, Zeta potential measurement. Methods Mol. Biol. 697, 63–70 (2011)CrossRefGoogle Scholar
  75. 75.
    S. Bhattacharjee, DLS and zeta potential–what they are and what they are not? J. Control. Release 235, 337–351 (2016)CrossRefGoogle Scholar
  76. 76.
    M.G. Carneiro-da-Cunha, M.A. Cerqueira, B.W. Souza, J.A. Teixeira, A.A. Vicente, Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr. Polym. 85, 522–528 (2011)CrossRefGoogle Scholar
  77. 77.
    M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie, K. Hashimoto, Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys. Chem. Chem. Phys. 6, 865–870 (2004)CrossRefGoogle Scholar
  78. 78.
    L. Zhang, H. Jia, C. Liu, M. Liu, Q. Meng, W. He, Enhanced generation of reactive oxygen species and photocatalytic activity by Pt-based metallic nanostructures: the composition matters. J. Environ. Sci. Health C 37, 1–13 (2019)CrossRefGoogle Scholar
  79. 79.
    Y. Xu, M.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000)CrossRefGoogle Scholar
  80. 80.
    Z.-M. Yang, G.-F. Huang, W.-Q. Huang, J.-M. Wei, X.-G. Yan, Y.-Y. Liu, C. Jiao, Z. Wan, A. Pan, Novel Ag3 PO4/CeO2 composite with high efficiency and stability for photocatalytic applications. J. Mater. Chem. A 2, 1750–1756 (2014)CrossRefGoogle Scholar
  81. 81.
    R. Saravanan, S. Joicy, V. Gupta, V. Narayanan, A. Stephen, Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater. Sci. Eng. C 33, 4725–4731 (2013)CrossRefGoogle Scholar
  82. 82.
    R. Beranek, Photo electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv. Phys. Chem. 2011, 2 (2011).  https://doi.org/10.1155/2011/786759 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryScience and Research Branch, Islamic Azad UniversityTehranIran
  2. 2.Department of Chemistry, Faculty of Basic SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of ChemistryVaramin-Pishva Branch, Islamic Azad UniversityVaraminIran
  4. 4.Department of Chemistry, Faculty of ScienceAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations