Advertisement

Photocatalytic Degradation Mechanism of the Visible-Light Responsive BiVO4/TiO2 Core–Shell Heterojunction Photocatalyst

  • Kangkai Hu
  • Lei EEmail author
  • Yajing Li
  • Xinyu Zhao
  • Dan Zhao
  • Wei Zhao
  • Hui Rong
Article
  • 10 Downloads

Abstract

The visible-light responsive BiVO4/TiO2 core–shell heterojunction photocatalyst was prepared by precipitation method. The crystal structure and optical properties of the samples were characterized. The XRD results indicated that the vector was anatase TiO2. EDS, XPS and XRD showed that BiVO4 was coated on the surface of TiO2. SPV and UV–Vis spectra certified that the BiVO4/TiO2 photocatalyst possessed better absorption in the visible-light region (425–470 nm). The optical band gap of BiVO4/TiO2 photocatalyst ranged from 2.38 to 2.14 eV and decreased with the BiVO4 amount increase from 2 to 6 mmol L−1. Compared to TiO2, the BiVO4/TiO2 photocatalyst exhibited much higher photocatalytic activity in degradation of methyl orange under visible light irradiation and lower photocatalytic activity in UV-light. Moreover, the effect of the different in formation mechanism of TiO2/BiVO4 and BiVO4/TiO2 on the photocatalytic activity was investigated in detail. The photocatalytic mechanism of BiVO4/TiO2 core–shell structure was discussed, which indicated that photoelectron reduction was the major degradation mechanism in this system. When TiO2 particles were properly coated with BiVO4 layer and the Bi/Ti molar ratio of 1:32, the composite photocatalyst could absorb UV-light and visible light at the same time, so the BiVO4/TiO2 core–shell heterojunction photocatalyst had the optimal photocatalytic activity in visible light irradiation, which was attributed to the spatial transfer of visible-excited high-energy electrons from TiO2 to BiVO4.

Graphical Abstract

Keywords

BiVO4/TiO2 Core–shell structure Precipitation method Photocatalytic mechanism Energy level 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support received from the Tianjin Natural Science Foundation (Grant No. 18JCYBJC87600) and the Key Projects of Tianjin Natural Science Foundation (Grant No. 16JCZDJC39100). The authors are indebted to Prof. L. Ge for his technical assistance in surface photovoltage spectroscopy (SPV).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10904_2019_1217_MOESM1_ESM.docx (973 kb)
Supplementary material 1 (DOCX 972 kb)

References

  1. 1.
    R. Kaplan, B. Erjavec, G. Dražić, J. Grdadolnik, A. Pintar, Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl. Catal. B 181, 465–474 (2016).  https://doi.org/10.1016/j.apcatb.2015.08.027 CrossRefGoogle Scholar
  2. 2.
    D. Zhang, G. Li, H. Wang, K.M. Chan, J.C. Yu, Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets. Cryst. Growth Des. 10, 1130–1137 (2015).  https://doi.org/10.1021/cg900961k CrossRefGoogle Scholar
  3. 3.
    H. Li, L. Zhu, C. Ma, H. Zhang, TiO2 hollow microspheres: synthesis, photocatalytic activity, and selectivity for a mixture of organic dyes. Monatsh. Chem. 145, 29–37 (2014).  https://doi.org/10.1007/s00706-013-1012-9 CrossRefGoogle Scholar
  4. 4.
    G. Li, H. Zhang, J. Lan, J. Li, Q. Chen, J. Liu, G. Jiang, Hierarchical hollow TiO2 spheres: facile synthesis and improved visible-light photocatalytic activity. Dalton Trans. 42, 8541–8544 (2013).  https://doi.org/10.1039/c3dt50503k CrossRefGoogle Scholar
  5. 5.
    P. Zhang, A. Li, J. Gong, Hollow spherical titanium dioxide nanoparticles for energy and environmental applications. Particuology 22, 13–23 (2015).  https://doi.org/10.1016/j.partic.2015.03.001 CrossRefGoogle Scholar
  6. 6.
    C. Zhang, Y. Zhou, Y. Zhang, S. Zhao, J. Fang, X. Sheng, T. Zhang, H. Zhang, Double-shelled TiO2 hollow spheres assembled with TiO2 nanosheets. Chem. Eur. J. 23, 4336–4343 (2017).  https://doi.org/10.1002/chem.201602654 CrossRefGoogle Scholar
  7. 7.
    M.A.M. Adnan, N.M. Julkapli, S.B.A. Hamid, Review on ZnO hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation. Rev. Inorg. Chem. 36, 77–104 (2016).  https://doi.org/10.1515/revic-2015-0015 Google Scholar
  8. 8.
    C. Sushma, S.G. Kumar, Advancements in the zinc oxide nanomaterials for efficient photocatalysis. Chem. Pap. 71, 2023–2042 (2017).  https://doi.org/10.1007/s11696-017-0217-5 CrossRefGoogle Scholar
  9. 9.
    W.B. Cross, I.P. Parkin, Aerosol assisted chemical vapour deposition of tungsten oxide films from polyoxotungstate precursors: active photocatalysts. Chem. Commun. 14, 1696–1697 (2003).  https://doi.org/10.1039/b303800a CrossRefGoogle Scholar
  10. 10.
    H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011).  https://doi.org/10.1002/adfm.201002477 CrossRefGoogle Scholar
  11. 11.
    M. Mohamed, W. Salleh, J. Jaafar, M. Rosmi, Z. Hir, M. Mutalib, A. Ismail, M. Tanemura, Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: bio-template assisted sol-gel synthesis and photocatalytic activity. Appl. Surf. Sci. 393, 46–59 (2017).  https://doi.org/10.1016/j.apsusc.2016.09.145 CrossRefGoogle Scholar
  12. 12.
    M. Mohamed, J. Jaafar, M. Zain, L. Minggu, M. Kassim, M. Rosmi, N. Alias, N. Nor, W. Salleh, M. Othman, In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@C, N co-doped anatase/rutile: efficient charge separation and enhanced visible-light photocatalytic performance. Appl. Surf. Sci. 436, 302–318 (2017).  https://doi.org/10.1016/j.apsusc.2017.11.229 CrossRefGoogle Scholar
  13. 13.
    M. Mohamed, M. Zain, L. Minggu, M. Kassim, J. Jaafar, N. Amin, Y. Ng, Revealing the role of kapok fibre as bio-template for In-situ construction of C-doped g-C3N4@C, N co-doped TiO2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance. Appl. Surf. Sci. 476, 205–220 (2019).  https://doi.org/10.1016/j.apsusc.2019.01.080 CrossRefGoogle Scholar
  14. 14.
    N. Rosman, W. Salleh, A. Ismail, J. Jaafar, Z. Harun, F. Aziz, M. Mohamed, B. Ohtani, M. Takashima, Photocatalytic degradation of phenol over visible light active ZnO/Ag2CO3/Ag2O nanocomposites heterojunction. J. Photochem. Photobiol. A 364, 602–612 (2018).  https://doi.org/10.1016/j.jphotochem.2018.06.029 CrossRefGoogle Scholar
  15. 15.
    A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Chem. Lett. 53, 229–230 (1998).  https://doi.org/10.1023/A:1019034728816 Google Scholar
  16. 16.
    M. Long, W. Cai, Photoelectrochemical properties of BiVO4 film electrode in alkaline solution. Chin. J. Catal. 29, 881–883 (2008).  https://doi.org/10.1016/S1872-2067(08)60069-8 CrossRefGoogle Scholar
  17. 17.
    A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrog. Energy 31, 1999–2017 (2006).  https://doi.org/10.1016/j.ijhydene.2006.01.014 CrossRefGoogle Scholar
  18. 18.
    T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J.P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C 115, 5657–5666 (2011).  https://doi.org/10.1021/jp109134z CrossRefGoogle Scholar
  19. 19.
    L.S. Zhang, H.L. Wang, Z.G. Chen, P.K. Wong, J.S. Liu, Bi2WO6 micro/nano-structures: synthesis, modifications and visible-light-driven photocatalytic applications. Appl. Catal. B 106, 1–13 (2011).  https://doi.org/10.1016/j.apcatb.2011.05.008 Google Scholar
  20. 20.
    T. George, S. Joseph, A.T. Sunny, S. Mathew, Visible-light photocatalytic activities of alpha-AgVO3 nanorods and BiVO4 nanobars. Int. J. Nanotechnol. 8, 963–978 (2011).  https://doi.org/10.1504/IJNT.2011.044440 CrossRefGoogle Scholar
  21. 21.
    A. Iwase, A. Kudo, Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution. J. Mater. Chem. 20, 7536–7542 (2010).  https://doi.org/10.1039/c0jm00961j CrossRefGoogle Scholar
  22. 22.
    H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem. Lett. 33, 1348–1349 (2004).  https://doi.org/10.1246/cl.2004.1348 CrossRefGoogle Scholar
  23. 23.
    Z.Q. Wang, W.J. Luo, S.C. Yan, J.Y. Feng, Z.Y. Zhao, Y.S. Zhu, Z.S. Li, Z.G. Zou, BiVO4 nano-leaves: mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation. CrystEngComm 13, 2500–2504 (2011).  https://doi.org/10.1039/C0CE00799D CrossRefGoogle Scholar
  24. 24.
    M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 38, 20211–20216 (2007).  https://doi.org/10.1021/jp063441z Google Scholar
  25. 25.
    S. Kohtani, M. Koshiko, A. Kudo, K. Tokumura, Y. Ishigaki, A. Toriba, K. Hayakawa, R. Nakagaki, Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B 46, 573–586 (2003).  https://doi.org/10.1016/S0926-3373(03)00320-5 CrossRefGoogle Scholar
  26. 26.
    X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou, Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Mater. Chem. Phys. 103, 162–167 (2007).  https://doi.org/10.1016/j.matchemphys.2007.02.008 CrossRefGoogle Scholar
  27. 27.
    K. Soma, A. Iwase, A. Kudo, Enhanced activity of BiVO4 powdered photocatalyst under visible light irradiation by preparing microwave-assisted aqueous solution methods. Catal. Lett. 144, 1962–1967 (2014).  https://doi.org/10.1007/s10562-014-1361-y CrossRefGoogle Scholar
  28. 28.
    M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng, H. Fu, Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy. Mater. 4, 4–9 (2014).  https://doi.org/10.1002/aenm.201300995 CrossRefGoogle Scholar
  29. 29.
    H. Jung, Y.C. Sang, C. Shin, B.K. Min, O.S. Joo, Y.J. Hwang, Effect of the Si/TiO2/BiVO4 heterojunction on the onset potential of photocurrents for solar water oxidation. ACS Appl. Mater. Inter. 7, 5788–5796 (2015).  https://doi.org/10.1021/am5086484 CrossRefGoogle Scholar
  30. 30.
    H. Zhang, C. Cheng, Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance. ACS Energy Lett. 2, 813–821 (2017).  https://doi.org/10.1021/acsenergylett.7b00060 CrossRefGoogle Scholar
  31. 31.
    J. Bian, Y. Qu, X. Zhang, N. Sun, D. Tang, L. Jing, Dimension-matched plasmonic Au/TiO2/BiVO4 nanocomposites as efficient wide-visible-light photocatalysts to convert CO2 and mechanism insights. J. Mater. Chem. A 6, 11838–11845 (2018).  https://doi.org/10.1039/C8TA02889C CrossRefGoogle Scholar
  32. 32.
    J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A.L. Briseno, P. Yang, TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2, 80–88 (2016).  https://doi.org/10.1021/acscentsci.5b00402 CrossRefGoogle Scholar
  33. 33.
    P.P. Liu, X. Liu, X.H. Huo, Y. Tang, J. Xu, H. Ju, TiO2-BiVO4 heterostructure to enhance photoelectrochemical efficiency for sensitive aptasensing. ACS Appl. Mater. Interfaces. 9, 27185–27192 (2017).  https://doi.org/10.1021/acsami.7b07047 CrossRefGoogle Scholar
  34. 34.
    S. Obreǵon, G. Coĺon, A ternary Er3+-BiVO4/TiO2 complex heterostructure with excellent photocatalytic performance. RSC Adv. 4, 6920–6926 (2014).  https://doi.org/10.1039/c3ra46603e CrossRefGoogle Scholar
  35. 35.
    Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, G. Xiao, BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal. B 104, 30–36 (2011).  https://doi.org/10.1016/j.apcatb.2011.02.031 CrossRefGoogle Scholar
  36. 36.
    M. Zalfani, B.V. Schueren, Z.Y. Hu, J.C. Rooke, R. Bourguiga, M. Wu, Y. Li, G.V. Tendeloo, B.L. Su, Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity. J. Mater. Chem. A 3, 21244–21256 (2015).  https://doi.org/10.1039/c5ta00783f CrossRefGoogle Scholar
  37. 37.
    R. Wang, J. Bai, Y. Li, Q. Zeng, J. Li, B. Zhou, BiVO4/TiO2(N2) nanotubes heterojunction photoanode for highly efficient photoelectrocatalytic applications. Nano-Micro. Lett. 9, 14 (2017).  https://doi.org/10.1007/s40820-016-0115-3 CrossRefGoogle Scholar
  38. 38.
    W.J. Yin, S. Chen, J.H. Yang, X.G. Gong, Y. Yan, S.H. Wei, Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction. Appl. Phys. Lett. 96, 221901 (2010).  https://doi.org/10.1063/1.3430005 CrossRefGoogle Scholar
  39. 39.
    K. Hu, L. E, D. Zhao, C. Hu, J. Cui, L. Lai, Q. Xiong, Z. Liu, Hydrothermal synthesis of a rutile/anatase TiO2 mixed crystal from potassium titanyl oxalate: crystal structure and formation mechanism. CrystEngComm 20, 3363–3369 (2018).  https://doi.org/10.1039/c8ce00330k CrossRefGoogle Scholar
  40. 40.
    A.L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).  https://doi.org/10.1107/S0021889802022112 CrossRefGoogle Scholar
  41. 41.
    J. Tang, J. Ye, Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides. J. Mater. Chem. 15, 4246–4251 (2005).  https://doi.org/10.1039/b504818d CrossRefGoogle Scholar
  42. 42.
    P. Li, S. Ouyang, G. Xi, T. Kako, J. Ye, The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3. J. Phys. Chem. C 116, 7621–7628 (2012).  https://doi.org/10.1021/jp210106b CrossRefGoogle Scholar
  43. 43.
    X. Zhang, L. Zhang, T. Xie, D. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem. C 113, 7371–7378 (2009).  https://doi.org/10.1021/jp900812d CrossRefGoogle Scholar
  44. 44.
    F. Wang, W. Li, S. Gu, H. Li, H. Zhou, X. Wu, Novel In2S3/ZnWO4 heterojunction photocatalysts: facile synthesis and high-efficiency visible-light-driven photocatalytic activity. RSC Adv. 5, 89940–89950 (2015).  https://doi.org/10.1039/c5ra16243b CrossRefGoogle Scholar
  45. 45.
    M. Wang, W. Li, Y. Zhao, S. Gu, F. Wang, H. Li, X. Liu, C. Ren, Synthesis of BiVO4–TiO2–BiVO4 three-layer composite photocatalyst: effect of layered heterojunction structure on the enhancement of photocatalytic activity. RSC Adv. 6, 75482–75490 (2016).  https://doi.org/10.1039/c6ra16796a CrossRefGoogle Scholar
  46. 46.
    K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68, 125–129 (2006).  https://doi.org/10.1016/j.apcatb.2006.08.002 CrossRefGoogle Scholar
  47. 47.
    P. Dong, Y. Wang, B. Cao, S. Xin, L. Guo, J. Zhang, F. Li, Ag3PO4/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability. Appl. Catal. B 132, 45–53 (2013).  https://doi.org/10.1016/j.apcatb.2012.11.022 CrossRefGoogle Scholar
  48. 48.
    L. Hoffart, U. Heider, R.A. Huggins, W. Witschel, R. Jooss, A. Lentz, Crystal growth and conductivity investigations on BiVO4 single crystals. Ionics 2, 34–38 (1996).  https://doi.org/10.1007/BF02375866 CrossRefGoogle Scholar
  49. 49.
    T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, A. Tünnermann, Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv. Opt. Mater. 4, 1780–1786 (2016).  https://doi.org/10.1002/adom.201600250 CrossRefGoogle Scholar
  50. 50.
    S. Sarkar, N.S. Das, K.K. Chattopadhyay, Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering. Solid State Sci. 33, 58–66 (2014).  https://doi.org/10.1016/j.solidstatesciences.2014.04.008 CrossRefGoogle Scholar
  51. 51.
    B. Wang, Z. Wan, H. Wu, S. Liu, Y. Chen, X. Sui, D. Yuan, Surface photovoltage: an efficient tool of evaluation of photocatalytical activity of materials. Adv. Mater. Res. 295–297, 614–617 (2011).  https://doi.org/10.4028/www.scientific.net/AMR.295-297.614 Google Scholar
  52. 52.
    X. Qian, D. Qin, Q. Song, Y. Bai, T. Li, X. Tang, E. Wang, S. Dong, Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO2 electrodes. Thin Solid Films 385, 152–161 (2001).  https://doi.org/10.1016/S0040-6090(01)00771-4 CrossRefGoogle Scholar
  53. 53.
    A.B. Anderson, Derivation of the extended Hückel method with corrections: one electron molecular orbital theory for energy level and structure determinations. J. Chem. Phys. 62, 1187–1188 (1975).  https://doi.org/10.1063/1.430562 CrossRefGoogle Scholar
  54. 54.
    F. Flores, J. Ortega, H. Vázquez, Modelling energy level alignment at organic interfaces and density functional theory. Phys. Chem. Chem. Phys. 11, 8658–8675 (2009).  https://doi.org/10.1039/b902492c CrossRefGoogle Scholar
  55. 55.
    J. Ma, S.H. Wei, T.A. Gessert, K.K. Chin, Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: case of Cu impurities in CdTe. Phys. Rev. B 83, 2335–2347 (2011).  https://doi.org/10.1103/PhysRevB.83.245207 Google Scholar
  56. 56.
    J.K. Cooper, S. Gul, F.M. Toma, L. Chen, P.A. Glans, J. Guo, J.W. Ager, J. Yano, I.D. Sharp, Electronic sStructure of monoclinic BiVO4. Chem. Mater. 26, 5365–5373 (2014).  https://doi.org/10.1021/cm5025074 CrossRefGoogle Scholar
  57. 57.
    G. Smith, R. Crook, J. Wadhawan, Measuring the work function of TiO2 nanotubes using illuminated electrostatic force microscopy. J. Phys. 471, 012045 (2013).  https://doi.org/10.1088/1742-6596/471/1/012045 Google Scholar
  58. 58.
    Y. Huang, J. Wu, Hydrogen production from water splitting by semiconductor oxides photocatalysis. Prog. Chem. 18, 861–869 (2006).  https://doi.org/10.3321/j.issn:1005-281X.2006.07.003 Google Scholar
  59. 59.
    T. Saison, N. Chemin, C. Chanéac, O. Durupthy, L. Mariey, F. Maugé, V. Brezová, J.P. Jolivet, New insights into BiVO4 properties as visible light photocatalyst. J. Phys. Chem. C 119, 12967–12977 (2015).  https://doi.org/10.1021/acs.jpcc.5b01468 CrossRefGoogle Scholar
  60. 60.
    P. Ju, Y. Wang, Y. Sun, D. Zhang, Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation. Dalton Trans. 45, 4588–4602 (2016).  https://doi.org/10.1039/c6dt00118a CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin Chengjian UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Building Green Functional MaterialsTianjin Chengjian UniversityTianjinChina
  3. 3.School of Environmental and Municipal EngineeringTianjin Chengjian UniversityTianjinChina

Personalised recommendations