Advertisement

The Applications of New Inorganic Polymer for Adsorption Cadmium from Waste Water

  • Nataša Mladenović
  • Ljiljana KljajevićEmail author
  • Snežana Nenadović
  • Marija Ivanović
  • Bojan Čalija
  • Jelena Gulicovski
  • Katarina Trivunac
Article
  • 15 Downloads

Abstract

Fundamental research of inorganic polymers prepared from available aluminosilicate precursors represent an innovative class of materials characterized by low energy consumption for production. This is just one of the reasons why their use is focused in protecting the environment for removing of heavy metals from aqueous solutions. The concentration of hydroxide as activator solution plays an important role in the geopolymerization process. The present study examined the use of geopolymer materials, obtained in reaction of geopolymerizations of metakaolin as precursor activated with NaOH concentration 2.0, 4.0, 6.0 and 8.0 mol/dm3 for removal of cadmium ions from aqueous solutions. The structure and properties of the obtained geopolymer samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflection infrared spectroscopy (DRIFTS). To investigate the surface charge of geopolymers the zeta potential measurements were performed. Batch adsorption experiments conducted at room temperature (23 ± 1 °C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 84.1% for GP6M at pH ≈ 6.7. The results generally showed that geopolymer samples could be considered as a potential adsorbent for cadmium removal from aqueous solutions.

Keywords

Geopolymer DRIFT Chemical properties Functional applications Freundlich isotherm model 

Notes

Acknowledgements

This project was financially supported by the Serbian Ministry of Education, Science and Technological Development on projects III 45012 and 172007 and Center for the synthesis, processing and characterization of materials for use in extreme conditions “CEXTREME LAB”.

References

  1. 1.
    P.B. Tchounwou, C.G. Yedjon, A.K. Patlolla, D.J. Sutton, Mol. Clin. Environ. Toxicol. (2012).  https://doi.org/10.1007/978-3-7643-8340-4_6 Google Scholar
  2. 2.
    S. Sripiboon, K. Suwannahong, T. Kreetachat, N. Kreetachat, Adv. Environ. Biol. (2016).  https://doi.org/10.5277/epe150402 Google Scholar
  3. 3.
    T. Mathialagan, T. Viraraghavan, J. Hazard. Mater. (2002).  https://doi.org/10.1016/S0304-3894(02)00084-5 Google Scholar
  4. 4.
    T.H. Vu, N. Gowripalan, J. Adv. Concr. Technol. (2018).  https://doi.org/10.3151/jact.16.124 Google Scholar
  5. 5.
    C. Fernández-Pereira, Y. Luna-Galiano, M. Pérez-Clemente, C. Leiva, F. Arroyo, R. Villegas, L.F. Vilches, Mater. Lett. (2018).  https://doi.org/10.1016/j.matlet.2018.05.027 Google Scholar
  6. 6.
    P. Duxson, J.L. Provis, G. Luckey, J.S.J. van Deventer, Cem. Concr. Res. (2007).  https://doi.org/10.1016/j.matlet.2018.05.027 Google Scholar
  7. 7.
    G. Habert, J.B. d’Espinose de Lacaillerie, N. Roussel, J. Clean. Prod. (2011).  https://doi.org/10.1016/j.jclepro.2011.03.012 Google Scholar
  8. 8.
    K.A. Komnitsas, Procedia Eng. (2011).  https://doi.org/10.1016/j.proeng.2011.11.2108 Google Scholar
  9. 9.
    J.L. Provis, S.A. Bernal, Annu. Rev. Mater. Res. (2014). https://www.annualreviews.org/doi/10.1146/annurev-matsci-070813-113515
  10. 10.
    P. De Silva, K. Sago-Crenstil, V. Sirivivatnanon, Cem. Concr. Res. (2007).  https://doi.org/10.1016/j.cemconres.2007.01.003 Google Scholar
  11. 11.
    J.G.S. Jaarsveld, J.S.J. Deventer, G.C. Lukey, Chem. Eng. J. (2002).  https://doi.org/10.1016/S1385-8947(02)00025-6 Google Scholar
  12. 12.
    S. Alonso, A. Palomo, Cem. Concr. Res. (2001).  https://doi.org/10.1016/S0008-8846(00)00435-X Google Scholar
  13. 13.
    M.L. Granizo, S. Alonso, M.T. Blanco-Varela, A. Palomo, J. Am. Ceram. Soc. (2002).  https://doi.org/10.1111/j.1151-2916.2002.tb00070.x Google Scholar
  14. 14.
    S.V. Patankar, Y.M. Ghugal, S.S. Jamkar, Indian J. Mater. Sci. (2014).  https://doi.org/10.1155/2014/938789 Google Scholar
  15. 15.
    K. Parthiban, K.S.R. Mohan, Int. J. Chem. Tech Res. 6, 2446–2450 (2014)Google Scholar
  16. 16.
    A.B. Malkawia, M.F. Nuruddina, A. Fauzia, H. Almattarneh, B.S. Mohammed, Procedia Eng. (2016).  https://doi.org/10.1016/j.proeng.2016.06.581 Google Scholar
  17. 17.
    C.N. Livi, W.L. Repette, IBRACON Struct. Mater. J. (2017).  https://doi.org/10.1590/s1983-41952017000600003 Google Scholar
  18. 18.
    A. Nmiri, N. Hamdi, O. Yazoghli-Marzouk, M. Duc, E. Srasra, J. Mater. Environ. Sci. 8, 676–690 (2017). https://www.jmaterenvironsci.com/Document/vol8/vol8_N2/73-JMES-2404-Nmiri.pdf
  19. 19.
    S.V. Patankar, S.S. Jamkar, D.D. More, Int. J. Eng. Technol. Manage. Appl. Sci. 5(1), 114–122 (2017)Google Scholar
  20. 20.
    S. Nenadović, L.J. Kljajević, M. Nenadoivć, M. Mirković, S. Marković, Z. Rakočević, Environ. Earth Sci. (2015).  https://doi.org/10.1007/c12665-014-3941-y Google Scholar
  21. 21.
    A. Palomo, F. Glasser, Br. Ceram. Trans. J. 91, 107–112 (1992)Google Scholar
  22. 22.
    J.L. Provis, G.C. Lukey, J.S. van Deventer, Chem. Mater. (2005).  https://doi.org/10.1021/cm050230i Google Scholar
  23. 23.
    N. Lee, H.R. Khalid, H. Lee, Microporous Mesoporous Mater. (2016).  https://doi.org/10.1016/j.micromeso.2016.04.016 Google Scholar
  24. 24.
    L.J. Janik, J.O. Skjemstad, Aust. J. Soil Res. (1995).  https://doi.org/10.1071/SR9950637 Google Scholar
  25. 25.
    T. Armaroli, T. Bécue, S. Gautier, Oil Gas Sci. Technol. Rev. IFP (2004).  https://doi.org/10.2516/ogst:2004016 Google Scholar
  26. 26.
    G. Accardo, R. Cioffi, F. Colangelo, R. d’Angelo, L. De Stefano, F. Paglietti, Materials (2014).  https://doi.org/10.3390/ma7010457 Google Scholar
  27. 27.
    J.G.S. Van Jaarsveld, J.S.J. van Deventer, G.C. Lukey, Mater. Lett. 57, 1272–1280 (2003)CrossRefGoogle Scholar
  28. 28.
    V.F.F. Barbosa, K.J.D. MacKenzie, C. Thaumaturgo, Int. J. Inorg. Mater. 2, 309–317 (2000)CrossRefGoogle Scholar
  29. 29.
    M. Kapur, M.K. Mondal, J. Taiwan Inst. Chem. Eng. 45, 1803–1813 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, W. Sun, Z. Li, J. Wuhan Univ. Technol. 23, 522–527 (2008)CrossRefGoogle Scholar
  31. 31.
    L.M. Kljajević, S.S. Nenadović, M.T. Nenadović, N.K. Bundaleski, B.Ž. Todorović, V.B. Pavlović, Z.L. Rakočević, Ceram. Int. 43, 6700–6708 (2017)CrossRefGoogle Scholar
  32. 32.
    C. Karlsson, E. Zanghellini, J. Swenson, B. Roling, D.T. Bowron, L. Borjesson, Phys. Rev. B 72, 064206 (2005)CrossRefGoogle Scholar
  33. 33.
    J.L. Provis, C.A. Rees, Geopolymer synthesis kinetics, in Geopolymers: structures, processing, properties and industrial applications, ed. by J.L. Provis, J.S.J. van Deventer (Woodhead Publishing, Abingdon UK, 2009), pp. 118–136CrossRefGoogle Scholar
  34. 34.
    P. Innocenzi, J. Non Cryst. Solids 316, 309–319 (2003)CrossRefGoogle Scholar
  35. 35.
    F. Fondeur, B.S. Mitchell, Spectrochim. Acta A (2000).  https://doi.org/10.3390/ma7010457 Google Scholar
  36. 36.
    A. Aronne, S. Esposito, C. Ferone, M. Pansini, P. Pernice, J. Mater. Chem. 12, 3039–3045 (2002)CrossRefGoogle Scholar
  37. 37.
    G. Roviello, L. Ricciotti, C. Ferone, F. Colangelo, R. Cioffi, O. Tarallo, Materials 6, 3943–3962 (2013)CrossRefGoogle Scholar
  38. 38.
    C. Karlsson, E. Zanghellini, J. Swenson, B. Roling, D.T. Bowron, L. Borjesson, Phys. Rev. B 5, 4 (2005).  https://doi.org/10.1103/PhysRevB.72.064206 Google Scholar
  39. 39.
    O.A. Oyetade, V.O. Nyamori, S.B. Jonnalagadda, B.S. Martincigh, Desalin. Water Treat. (2018).  https://doi.org/10.5004/dwt.2018.22493 Google Scholar
  40. 40.
    Y.-L. Chen, Y.-Y. Tong, R.-W. Pan, J. Tang, Adv. Mater. Res. (2013).  https://doi.org/10.4028/www.scientific.net/AMR.704.313 Google Scholar
  41. 41.
    S. Lukman, M.H. Essa, N.D. Mu`azu, A. Bukhari, C. Basheer, J. Environ. Sci. Technol. (2013). https://scialert.net/abstract/?doi=jest.2013.1.15
  42. 42.
    H. Javadian, F. Ghorbani, H.-A. Tayebi, S.M.H. Asl, Arab. J. Chem. (2015).  https://doi.org/10.1016/j.arabjc.2013.02.018 Google Scholar
  43. 43.
    I. Kara, D. Yilmazer, S.T. Akar, Appl. Clay Sci. (2017).  https://doi.org/10.1016/j.clay.2017.01.008 Google Scholar
  44. 44.
    Y.F. Jia, K.M. Thomas, Langmuir 16(3), 1114–1122 (2000)CrossRefGoogle Scholar
  45. 45.
    E. Cheraghi, E. Ameri, A. Moheb, Int. J. Environ. Sci. Technol. 12, 2579–2592 (2015)CrossRefGoogle Scholar
  46. 46.
    A. Kakaei, M. Kazemeini, Iran. J. Toxicol. 10(1), 9–14 (2016)Google Scholar
  47. 47.
    M. Tanzifi, M.K. Nezhad, K. Karimipour, J. Water Environ. Nanotechnol. 2(4), 265–277 (2017)Google Scholar
  48. 48.
    A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, IOSR J. Appl. Chem. (2012).  https://doi.org/10.9790/5736-0313845 Google Scholar
  49. 49.
    S.A. Sadeek, N.A. Negm, H.H. Hefni, M.M.A. Wahab, Int. J. Biol. Macromol. (2015).  https://doi.org/10.1016/j.ijbiomac.2015.08.031 Google Scholar
  50. 50.
    O. Długosz, M. Banach, J. Mol. Liq. (2018).  https://doi.org/10.1016/j.molliq.2018.03.041 Google Scholar
  51. 51.
    N. Ariffin, M.M. Al Bakri Abdullah, M. R. Rozainy, M.A. Zainol, M.F. Murshed, H. Zain, M.A. Faris, and R. Bayuaji, MATEC Web of Conferences 97, 01023, (2017).  https://doi.org/10.1051/matecconf/20179701023
  52. 52.
    K. Nakamoto, T. Kobayashi, Sep. Sci. Technol. (2018).  https://doi.org/10.1080/01496395.2018.1505914 Google Scholar
  53. 53.
    K.L. Wasewar, P. Kumar, S. Chand, B.N. Padmini, T.T. Teng, Clean: Soil, Air, Water 38(7), 649–656 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nataša Mladenović
    • 1
  • Ljiljana Kljajević
    • 2
    • 4
    Email author
  • Snežana Nenadović
    • 2
    • 4
  • Marija Ivanović
    • 2
  • Bojan Čalija
    • 3
  • Jelena Gulicovski
    • 2
    • 4
  • Katarina Trivunac
    • 1
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Laboratory for Materials Sciences, Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Pharmaceutical Technology and CosmetologyUniversity of BelgradeBelgradeSerbia
  4. 4.Center for the Synthesis, Processing and Characterization of Materials for Use in Extreme Conditions “CEXTREME LAB”, Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations