Advertisement

Enhancement of QCM Detection for Heavy Metal Ions Based on TGA Modified CdTe Nanospheres

  • Ping SunEmail author
  • Yurun Chen
  • Mingguo Yan
  • Tingting Tang
Article
  • 12 Downloads

Abstract

Quartz crystal microbalance sensor was designed based on thioglycolic acid (TGA) modified CdTe nanospheres to detect heavy metal ions in aqueous solution. TGA plays an important role in the adsorption of heavy metal ions, and CdTe nanospheres are used to amplify mass signals. Experimental results show that the sensitivity of the sensor is six times that of the QCM sensor based on TGA only. Frequency shifts show a good linear relationship with the concentration of heavy metal ions. The detection limit for Pb2+, Cd2+ and Cu2+ is 0.096, 0.089 and 0.189 μg/L respectively. This sensing system is also found partially reversible by adding the strong chelating agent to remove the heavy metal ions on the electrode surface.

Keywords

Cadmium nanospheres Heavy metal ions Quartz crystal microbalance Thioglycolic acid 

Notes

Acknowledgements

This work was supported by National Science Foundation of China (Grant No. 61701050), Project of Sichuan Provincial Department of Education (2018Z073) and Scientific research fund of Chengdu University of Information Technology (KYTZ201704).

References

  1. 1.
    M. Safari, Y. Yamini, M.Y. Masoomi, A. Morsali, A. Mani-Varnosfaderani, Microchim. Acta 184, 1555–1564 (2017)CrossRefGoogle Scholar
  2. 2.
    X. Fatima Grace et al., J. Drug Deliv. Ther. 1(3), 77–81 (2014)Google Scholar
  3. 3.
    G. Habte, J.Y. Choi, E.Y. Nho, S.Y. Oh, N. Khan, H. Choi, K.U. Park, K.S. Kim, Food Sci. Biotechnol. 24(1), 373–378 (2015)CrossRefGoogle Scholar
  4. 4.
    O.E. Petrova, K. Sauer, c-di-GMP Signal. (2017).  https://doi.org/10.1007/978-1-4939-7240-1_4 Google Scholar
  5. 5.
    N. Can, M. Ağar, A. Altındal, AIP Conf. Proc. 1722, 220002 (2016)CrossRefGoogle Scholar
  6. 6.
    B. Mızrak et al., J. Porphyr. Phthalocyanines 20, 1457–1462 (2016)CrossRefGoogle Scholar
  7. 7.
    A.M. Etorki, A.R. Hillman, K.S. Ryder, A. Glidle, J. Electroanal. Chem. 599(2), 275–287 (2007)CrossRefGoogle Scholar
  8. 8.
    L. Sartore, M. Barbaglio, L. Borgese, E. Bontempi, Sens. Actuators B 155(2), 538–544 (2011)CrossRefGoogle Scholar
  9. 9.
    P. Sun, Y. Jiang, G. Xie et al., Sens. Actuators B 141, 104–108 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Rao, W. Liu, Z. Lu et al., Microchim. Acta 183, 581–588 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Zhang, H. Zhou, Q. Mei, S. Wang, G. Guan, R. Liu, J. Zhang, Z. Zhang, J. Am. Chem. Soc. 133(22), 8424–8427 (2011)CrossRefGoogle Scholar
  12. 12.
    M.K. Ram, O. Yavuz, V. Lahsangah, M. Aldissi, Sens. Actuators B 106, 750–757 (2005)CrossRefGoogle Scholar
  13. 13.
    H. He, L. Zhou, Y. Wang et al., Talanta 131, 8–13 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Xie, P. Sun, X. Yan, Sens. Actuators B 145, 373–377 (2010)CrossRefGoogle Scholar
  15. 15.
    F. Salam, Y. Uludag, I.E. Tothill, Talanta 115, 761–767 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ping Sun
    • 1
    • 2
    Email author
  • Yurun Chen
    • 1
  • Mingguo Yan
    • 2
  • Tingting Tang
    • 1
  1. 1.Chengdu University of Information TechnologyChengduChina
  2. 2.Sichuan Agricultural UniversityYa’anChina

Personalised recommendations