Advertisement

Recent Advances in Materials, Parameters, Performance and Technology in Ammonia Sensors: A Review

  • Suveda AaryaEmail author
  • Yogesh KumarEmail author
  • R. K. Chahota
Topical Review
  • 6 Downloads

Abstract

Importance of ammonia sensors is increasing significantly worldwide in environmental monitoring, control of chemical processes, agricultural, and medical applications. Particularly, the detection of ammonia gas is very important for many industries due to its toxicity and environmental hazards. The hybrid nanostructures formed by blending of nanoparticles of metal/metal-oxides with polymer or its derivatives have been explored which showed improved gas sensing ability and selectivity at room temperature. This article reviews ammonia gas sensors based on semiconducting materials like metals, metal oxides, metal oxide-polymers and carbon nanotubes (CNT’s) based hybrid nanostructures for different level of detection of ammonia in various applications. The characteristic performance parameters of these sensors, such as measuring range, sensitivity, selectivity, response/recovery time and the latest technological developments are discussed with detailed analysis in this article.

Keywords

Ammonia sensor Hybrid nanostructures Sensitivity Selectivity 

Notes

Acknowledgements

Support from the University Grant Commission (UGC), Grants No. PDFWM-2013-14-OB-UTT 18209 is gratefully acknowledged. The author (YK) acknowledge the financial support received from the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Sanction No. ECR/2016/001871) under the scheme Early Career Research Award.

References

  1. 1.
    R. Gardner, Use of the reciprocal calculation procedure for setting workplace emergency action levels for hydrocarbon mixtures and their relationship to lower explosive limits. Ann. Occup. Hyg. 55, 1–14 (2011)Google Scholar
  2. 2.
    B. Timmer, W. Olthuis, A. van den Berg, Ammonia sensors and their applications—a review. Sens. Actuators B 107, 666–677 (2005)CrossRefGoogle Scholar
  3. 3.
    X. Liu, S. Chang, H. Liu, S. Hu, D. Zhang, H. Ning, A survey on gas sensing technology. Sensors 12, 9635–9665 (2012)CrossRefPubMedGoogle Scholar
  4. 4.
    G. Jimenez-Cadena, J. Riu, F.X. Riusa, Gas sensors based on nanostructured materials. Analyst 132, 1083–1099 (2007)CrossRefPubMedGoogle Scholar
  5. 5.
    C.S. Rout, M. Hegde, A. Govindaraj, C.N.R. Rao, Ammonia sensors based on metal oxide nanostructures. Nanotechnology 18, 205504 (2007)CrossRefGoogle Scholar
  6. 6.
    T.Y. Chen, H.I. Chen, Y.J. Liu, C.C. Huang, C.S. Hsu, C.F. Chang, W.C. Liu, Ammonia sensing characteristics of a Pt/AlGaN/GaN Schottky diode. Sens. Actuators B 155, 347–350 (2011)CrossRefGoogle Scholar
  7. 7.
    Z. Fan, J.G. Lu, Chemical sensing with ZnO nanowire field-effect transistor. IEEE Trans. Nanotechnol. 5, 393–396 (2006)CrossRefGoogle Scholar
  8. 8.
    T.Y. Chen, H.I. Chen, C.S. Hsu, C.C. Huang, C.F. Chang, P.C. Chou, W.C. Liu, On an ammonia gas sensor based on a Pt/AlGaN heterostructure field-effect transistor. IEEE Electron. Device Lett. 33, 347–350 (2011)Google Scholar
  9. 9.
    A.O. Dikovska, G.B. Atanasova, N.N. Nedyalkov, P.K. Stefanov, P.A. Atanasov, E.I. Karakoleva, A.T. Andreev, Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber. Sens. Actuators B 146, 331–336 (2010)CrossRefGoogle Scholar
  10. 10.
    L.A. Mashat, H.D. Tran, W. Wlodarski, R.B. Kaner, K.K. Zadeh, Polypyrrolenanofiber surface acoustic wave gas sensors. Sens. Actuators B 134, 826–831 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Moos, R. Muller, C. Plog, A. Knezevic, H. Leye, E. Irion, T. Braun, K.J. Marquardt, K. Binder, Selective ammonia exhaust gas sensor for automotive applications. Sens. Actuators B 83, 181–189 (2002)CrossRefGoogle Scholar
  12. 12.
    C.W. Lin, H.I. Chen, T.Y. Chen, C.C. Huang, C.S. Hsu, W.C. Liu, Ammonia sensing characteristics of sputtered indium tin oxide (ITO) thin films on quartz and sapphire substrates. IEEE Trans. Electron. Devices 58, 4407–4413 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Wang, Y. Huang, X. Ji, X. Yang, P.I. Gouma, M. Dudley, Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110, 23777–23782 (2006)CrossRefPubMedGoogle Scholar
  14. 14.
    T.Y. Chen, H.I. Chen, C.S. Hsu, C.C. Huang, J.S. Wu, P.C. Chou, W.C. Liu, Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration. Sens. Actuators B 221, 491–498 (2015)CrossRefGoogle Scholar
  15. 15.
    H.X. Tang, M. Yan, H. Zhang, S. Li, X. Ma, M. Wang, D. Yang, A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens. Actuators B 114, 910–915 (2006)CrossRefGoogle Scholar
  16. 16.
    N.G. Deshpande, Y.G. Gudage, R. Sharma, J.C. Vyas, J.B. Kim, Y.P. Lee, Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sens. Actuators B 138, 76–84 (2009)CrossRefGoogle Scholar
  17. 17.
    V. Talwar, O. Singh, R.C. Singh, ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sens. Actuators B 191, 276–282 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Org. Electron. 15, 2971–2981 (2014)CrossRefGoogle Scholar
  19. 19.
    D.K. Bandgar, S.T. Navale, A.T. Mane, S.K. Gupta, D.K. Aswal, V.B. Patil, Ammonia sensing properties of polyaniline/α-Fe2O3 hybrid nanocomposites. Synth. Met. 204, 1–9 (2015)CrossRefGoogle Scholar
  20. 20.
    U.V. Patil, N.S. Ramgir, N. Karmakar, A. Bhogaled, A.K. Debnath, D.K. Aswal, S.K. Gupta, D.C. Kothari, Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Appl. Surf. Sci. 339, 69–74 (2015)CrossRefGoogle Scholar
  21. 21.
    S.G. Pawar, M.A. Chougule, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, V.B. Patil, Room temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite. IEEE Sens. J. 11(12), 3417–3423 (2011)CrossRefGoogle Scholar
  22. 22.
    K.T. Kumar, S. Manivannann, Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection. Ceram. Int. 42, 1769–1776 (2016)CrossRefGoogle Scholar
  23. 23.
    Q. Feng, X. Li, J. Wang, M. Gaskov Alexander, Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens. Actuators B. 222, 864–870 (2016)CrossRefGoogle Scholar
  24. 24.
    Q. Liang, D.L.S. Gao, D. Jiang, J. Zhao, J. Qin, J. Hou, Room-temperature NH3 sensors with high sensitivity and short response/recovery times. Chin. Sci. Bull. 59(4), 447–451 (2014)CrossRefGoogle Scholar
  25. 25.
    H. Yan, P. Song, S. Zhang, J. Zhang, Z. Yang, Q. Wang, A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceram. Int. 42, 9327–9331 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Wang, J. Liu, X. Cui, Y. Gao, J. Ma, Y. Sun, P. Sun, F. Liu, X. Liang, T. Zhang, G. Lu, NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sens. Actuators B 238, 473–481 (2017)CrossRefGoogle Scholar
  27. 27.
    M.O. Ansari, F. Mohammad, Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sens. Actuators B 157, 122–129 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Han, W. Huang, W. Shi, J. Yu, Performance improvement of organic field-effect transistor ammonia gas sensor using ZnO/PMMA hybrid as dielectric layer. Sens. Actuators B 203, 9–16 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Han, X. Zhuang, W. Shi, X. Yang, L. Li, J. Yu, Poly(3-hexylthiophene)/polystyrene (P3HT/PS) blends based organic field-effect transistor ammonia gas sensor. Sens. Actuators B 225, 10–15 (2016)CrossRefGoogle Scholar
  30. 30.
    M. Ganiga, J. Cyriac, FRET based ammonia sensor using carbon dots. Sens. Actuators B 225, 522–528 (2016)CrossRefGoogle Scholar
  31. 31.
    G. Haiquan, T. Shiquan, Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sens. Actuators B 123, 578–582 (2007)CrossRefGoogle Scholar
  32. 32.
    C.E. Simion, A. Sackmann, V.S. Teodorescu, C.F. Rusti, A. Stanoiu, Room temperature ammonia sensing with barium strontium titanate under humid air background. Sens. Actuators B 220, 1241–1246 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Klinbumrung, T. Thongtem, A. Phuruangrat, S. Thongtem, Optical and ammonia-sensing properties of SnO2 nanoparticles synthesized using a 900 W microwave. Jpn. J. Appl. Phys. 55, 085001 (2016)CrossRefGoogle Scholar
  34. 34.
    T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, Gold-loaded tungsten oxide sensor for detection of ammonia in air. Chem. Lett. 1992, 639–642 (1992)CrossRefGoogle Scholar
  35. 35.
    M. Ando, T. Tsuchida, S. Suto, T. Suzuki, C. Nakayama, N. Miura, N. Yamazoe, Ammonia gas sensor using thick film of Au-Loaded tungsten trioxide. J. Ceram. Soc. Jpn. 104, 1112–1116 (1996)CrossRefGoogle Scholar
  36. 36.
    N. Yamazoe, J. Tamaki, N. Miura, Role of hetero-junctions in oxide semiconductor gas sensors. Mater. Sci. Eng. B 41, 178–181 (1996)CrossRefGoogle Scholar
  37. 37.
    X. Wang, N. Miura, N. Yamazoe, Study of WO3-based sensing materials for NH3 and NO detection. Sens. Actuators B 66, 74–76 (2000)CrossRefGoogle Scholar
  38. 38.
    C.N. Xu, N. Miura, Y. Ishida, K. Matsuda, N. Yamazoe, Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element. Sens. Actuators B 65, 163–165 (2000)CrossRefGoogle Scholar
  39. 39.
    V. Modafferi, G. Panzera, A. Donato, P.L. Antonucci, C. Cannill, N. Donato, D. Spadaro, G. Neri, Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers. Sens. Actuators B 163, 61–68 (2012)CrossRefGoogle Scholar
  40. 40.
    S.K. Lee, D. Chang, S.W. Kim, Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection. J. Hazard. Mater. 268, 110–114 (2014)CrossRefPubMedGoogle Scholar
  41. 41.
    M.S. Park, K.H. Kim, M.J. Kim, Y.S. Lee, NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide. Colloids Surf. A 490, 104–109 (2016)CrossRefGoogle Scholar
  42. 42.
    J. Huotaria, R. Bjorklund, J. Lappalainen, A.L. Spetz, Pulsed laser deposited nanostructured vanadium oxide thin films characterized as ammonia sensors. Sens. Actuators B 217, 22–29 (2015)CrossRefGoogle Scholar
  43. 43.
    R.H. Vignesha, K.V. Sankar, S. Amaresh, Y.S. Lee, R.K. Selvan, Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sens. Actuators B 220, 50–58 (2015)CrossRefGoogle Scholar
  44. 44.
    R. Ghosh, A. Singh, S. Santra, S.K. Ray, A. Chandra, P.K. Guha, Highly sensitive large-area multi-layered graphene-based flexible ammonia sensor. Sens. Actuators B 205, 67–73 (2014)CrossRefGoogle Scholar
  45. 45.
    P.G. Prabhash, V.S. Haritha, S.S. Naira, R. Pilankatt, Localized surface plasmon resonance based highly sensitive room temperature pH sensor for detection and quantification of ammonia. Sens. Actuators B 240, 580–585 (2017)CrossRefGoogle Scholar
  46. 46.
    S. Pandey, G.K. Goswami, K.K. Nanda, Green synthesis of polysaccharide/gold nanoparticle nanocomposite: an efficient ammonia sensor. Carbohyd. Polym. 94, 229–234 (2013)CrossRefGoogle Scholar
  47. 47.
    D. Tiwari, K. Mullaney, S. Korposh, S.W. James, S.W. Lee, R.P. Tatam, An ammonia sensor based on lossy mode resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide. Sens. Actuators B 242, 645–652 (2017)CrossRefGoogle Scholar
  48. 48.
    S. Pandey, G.K. Goswami, K.K. Nanda, Green synthesis of biopolymer–silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int. J. Biol. Macromol. 51, 583–589 (2012)CrossRefPubMedGoogle Scholar
  49. 49.
    C.S. Lee, B.Y. Chou, W.C. Hsu, A novel transparent AZO-gated Al0.2Ga0.8As/In0.2Ga0.8As pHEMT and photo sensing characteristics there of. IEEE Trans. Electron. Devices 58, 725–731 (2011)CrossRefGoogle Scholar
  50. 50.
    J.J. Wu, S.C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapour deposition. Adv. Mater. 14, 215–218 (2002)CrossRefGoogle Scholar
  51. 51.
    Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, R.P.H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater. 17, 1001–1006 (2005)CrossRefGoogle Scholar
  52. 52.
    M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil, Modified zinc oxide thick film resistors as NH3 gas sensor. Sens. Actuators B 115, 128–133 (2006)CrossRefGoogle Scholar
  53. 53.
    X. Wang, J. Zhang, Z. Zhu, Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance. Appl. Surf. Sci. 252, 2404–2411 (2006)CrossRefGoogle Scholar
  54. 54.
    D.R. Patil, L.A. Patil, Ammonia sensing resistors based on Fe2O3-modified ZnO thick films. IEEE Sens. J. 7(3), 434–439 (2007)CrossRefGoogle Scholar
  55. 55.
    A. Ghosh, Y.G. Gudage, R. Sharma, R.S. Mane, S.H. Han, Room Temperature Ammonium gas sensing behavior of upright-standing ZnO nano-sheets. Sens. Transducers J. 98(11), 1–5 (2008)Google Scholar
  56. 56.
    D.D. Nguyen, D.T. Do, X.H. Vu, D.V. Dang, D.C. Nguyen, ZnO nanoplates surfaced-decorated by WO3 nanorods for NH3 gas sensing application. Adv Nat Sci 7, 015004 (2016)Google Scholar
  57. 57.
    N.V. Quy, V.A. Minh, N.V. Luan, V.N. Hung, N.V. Hieu, Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods. Sens. Actuators B 153, 188–193 (2011)CrossRefGoogle Scholar
  58. 58.
    Y. Zeng, Z. Lou, L. Wang, B. Zou, T. Zhang, W. Zheng, G. Zou, Enhanced ammonia sensing performances of Pd sensitized flowerlike ZnO nanostructure. Sens. Actuators B 156, 395–400 (2011)CrossRefGoogle Scholar
  59. 59.
    B. Renganathan, D. Sastikumar, G. Gobi, N.R. Yogamalar, A.C. Bose, Nanocrystalline ZnO coated fiber optic sensor for ammonia gas detection. Opt. Laser Technol. 43, 1398–1404 (2011)CrossRefGoogle Scholar
  60. 60.
    G.K. Mani, B.B. John Rayappan, A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B 183, 459–466 (2013)CrossRefGoogle Scholar
  61. 61.
    V.A. Minh, L.A. Tuan, T.Q. Huy, V.N. Hung, N.V. Quy, Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl. Surf. Sci. 265, 458–464 (2013)CrossRefGoogle Scholar
  62. 62.
    S.Y. Wang, J.Y. Ma, Z.J. Li, H.Q. Su, N.R. Alkurd, W.L. Zhou, L. Wang, B. Du, Y.L. Tang, D.Y. Ao, S.C. Zhang, Q.K. Yu, X.T. Zu, Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film. J. Hazard. Mater. 285, 368–374 (2015)CrossRefPubMedGoogle Scholar
  63. 63.
    E. Fazio, M. Hjiri, R. Dhahri, L.E. Mir, G. Sabatino, F. Barreca, F. Neri, S.G. Leonardi, A. Pistone, G. Neri, Ammonia sensing properties of V-doped ZnO: Ca nanopowders prepared by sol–gel synthesis. J. Solid State Chem. 226, 192–200 (2015)CrossRefGoogle Scholar
  64. 64.
    P.S. Venkatesh, P. Dharmaraja, V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sens. Actuators B 212, 10–17 (2015)CrossRefGoogle Scholar
  65. 65.
    Y. Qiu, G. Tan, P. Xua, Q. Luo, X. Lin, W. Huang, J. Li, Preparation of Cu(OH)2 and ZnO nanoarrays on surface of metal substrates by a simple method and application as ammonia sensors. Appl. Surf. Sci. 347, 548–552 (2015)CrossRefGoogle Scholar
  66. 66.
    K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B.B. Rayappan, R. Ladchumananandasivam, J.S. Aanand, M. Jayachandran, M. Maaza, Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers. IEEE Sens. J. 16(8), 2477–2483 (2016)CrossRefGoogle Scholar
  67. 67.
    M. Saroch, S. Srivastava, D. Fink, A. Chandra, Room temperature ammonia gas sensing using mixed conductor based TEMPOS structures. Sensors 8, 6355–6370 (2008)CrossRefPubMedGoogle Scholar
  68. 68.
    L. Hong, Y. Li, M. Yang, Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite. Sens. Actuators B 145, 25–31 (2010)CrossRefGoogle Scholar
  69. 69.
    P. Song, Q. Wang, Z. Yang, Ammonia gas sensor based on PPy/ZnSnO3 nanocomposites. Mater. Lett. 65, 430–432 (2011)CrossRefGoogle Scholar
  70. 70.
    Y. Jia, H. Yu, Y. Zhang, F. Dong, Z. Li, Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystalmicrobalance for use as a highly sensitive ammonia sensor. Colloids Surf. B 148, 263–269 (2016)CrossRefGoogle Scholar
  71. 71.
    G.D. Khuspe, S.T. Navale, M.A. Chougule, V.B. Patil, Ammonia gas sensing properties of CSA doped PANi-SnO2 nanohybrid thin films. Synth. Met. 185–186, 1–8 (2013)Google Scholar
  72. 72.
    Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 178, 485–493 (2013)CrossRefGoogle Scholar
  73. 73.
    Z. Pang, J. Fu, L. Luo, F. Huang, Q. Wei, Fabrication of PA6/TiO2/PANI composite nanofibers by electrospinning–electrospraying for ammonia sensor. Colloids Surf. A 461, 113–118 (2014)CrossRefGoogle Scholar
  74. 74.
    S.K. Mishra, S.N. Tripathi, V. Choudhary, B.D. Gupta, SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B 199, 190–200 (2014)CrossRefGoogle Scholar
  75. 75.
    M. Joulazadeh, A.H. Navarchian, Ammonia detection of one-dimensional nano-structured polypyrrole/metal oxide nanocomposites sensors. Synth. Met. 210, 404–411 (2015)CrossRefGoogle Scholar
  76. 76.
    C. Xiang, D. Jiang, Y. Zoua, H. Chu, S. Qiu, H. Zhang, F. Xu, L. Sun, L. Zheng, Ammonia sensor based on polypyrrole–graphene nanocomposite decorated with titania nanoparticles. Ceram. Int. 41, 6432–6438 (2015)CrossRefGoogle Scholar
  77. 77.
    S.A. Ibrahim, N.A. Rahman, M.A. Bakar, S.H. Girei, M.H. Yaacob, H. Ahmad, M.A. Mahdi, Room temperature ammonia sensing using tapered multimode fiber coated with polyaniline nanofibers. Opt. Express 23(3), 2837–2845 (2015).  https://doi.org/10.1364/OE.23.002837 CrossRefPubMedGoogle Scholar
  78. 78.
    D.C. Tiwari, P. Atri, R. Sharma, Sensitive detection of ammonia by reduced graphene oxide/polypyrrole nanocomposites. Synth. Met. 203, 228–234 (2015)CrossRefGoogle Scholar
  79. 79.
    A. Kaur, R. Kumar, Sensing of ammonia at room temperature by polypyrrole-tin oxide nanostructures: investigation by Kelvin probe force microscopy. Sens. Actuators A 245, 113–118 (2016)CrossRefGoogle Scholar
  80. 80.
    S. Ummartyotin, H. Manuspiy, A critical review on cellulose: from fundamental to an approach on sensor technology. Renew. Sustain. Energy Rev. 41, 402–412 (2015)CrossRefGoogle Scholar
  81. 81.
    Z. Pang, Z. Yang, Y. Chen, J. Zhang, Q. Wang, F. Huang, Q. Wei, A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf. A 494, 248–255 (2016)CrossRefGoogle Scholar
  82. 82.
    A.L. Sharma, K. Kumar, A. Deep, Nanostructured polyaniline films on silicon for sensitive sensing of ammonia. Sens. Actuators A 198, 107–112 (2013)CrossRefGoogle Scholar
  83. 83.
    Y. Yan, M. Zhang, C.H. Moon, H.C. Su, N.V. Myung, E.D. Haberer, Viral-templated gold/polypyrrole nanopeapods for an ammonia gas sensor. Nanotechnology 27, 325502 (2016)CrossRefPubMedGoogle Scholar
  84. 84.
    M. Aleixandre, M. Gerboles, Review of small commercial sensors for indicative monitoring of ambient gas. Chem. Eng. Trans. 2012(30), 169–174 (2012)Google Scholar
  85. 85.
    D.Q. Wu, L.L. Wu, H.C. Cui, H.N. Zhang, YuJY Yong, A rapid ammonia sensor based on lysine nanogel-sensitized PANI/PAN nanofibers. J. Mater. Chem. B 4, 1520–1527 (2016)CrossRefGoogle Scholar
  86. 86.
    T. Xie, G. Xie, Y. Su, D. Hongfei, Z. Ye, Y. Jiang, Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors. Nanotechnology 27, 065502 (2016)CrossRefPubMedGoogle Scholar
  87. 87.
    J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)CrossRefPubMedGoogle Scholar
  88. 88.
    R.K. Tripathi, O.S. Panwar, A.K. Srivastava, I. Rawal, S. Chockalingam, Structural, nanomechanical, field emission and ammonia gas sensing properties of nitrogenated amorphous carbon films deposited by filtered anodic jet carbon arc technique. Talanta 125, 276–283 (2014)CrossRefPubMedGoogle Scholar
  89. 89.
    S. Cui, H. Pu, G. Lu, Z. Wen, E.C. Mattson, C. Hirschmugl, M.G. Josifovska, M. Weinert, J. Chen, Fast and selective room-temperature ammonia sensors. Using silver nanocrystal functionalized carbon nanotubes. ACS Appl. Mater. Interfaces 4, 4898–4904 (2012)CrossRefPubMedGoogle Scholar
  90. 90.
    S. Mun, Y. Chen, J. Kim, Cellulose–titanium dioxide–multiwalled carbon nanotube hybrid nanocomposite and its ammonia gas sensing properties at room temperature. Sens. Actuators B 171–172, 1186–1191 (2012)CrossRefGoogle Scholar
  91. 91.
    S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, J. Chen, Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst 138, 2877–2882 (2013)CrossRefPubMedGoogle Scholar
  92. 92.
    J.M. Tulliani, A. Cavalieri, S. Musso, E. Sardella, F. Geobaldo, Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sens. Actuators B 152, 144–154 (2011)CrossRefGoogle Scholar
  93. 93.
    S.M.M. Zanjani, M.M. Sadeghi, M. Holt, S.F. Chowdhury, L. Tao, D. Akinwande, Enhanced sensitivity of grapheme ammonia gas sensors using molecular doping. Appl. Phys. Lett. 108, 033106 (2016)CrossRefGoogle Scholar
  94. 94.
    S. Sharma, S. Hussain, S. Singh, S.S. Islam, MWCNT-conducting polymer composite based ammonia gas sensors: a new approach for complete recovery process. Sens. Actuators B 194, 213–219 (2014)CrossRefGoogle Scholar
  95. 95.
    S. Abdulla, T.L. Mathew, B. Pullithadathi, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuators B 221, 1523–1534 (2015)CrossRefGoogle Scholar
  96. 96.
    Y. Liu, L. Wang, H. Wang, M. Xiong, T. Yang, G.S. Zakharova, Highly sensitive and selective ammonia gas sensors based on PbS quantum dots/TiO2 nanotube arrays at room temperature. Sens. Actuators B 236, 529–536 (2016)CrossRefGoogle Scholar
  97. 97.
    N.V. Hieu, N.Q. Dung, P.D. Tam, T. Trung, N.D. Chien, Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room. Sens. Actuators B 140, 500–507 (2009)CrossRefGoogle Scholar
  98. 98.
    J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators B 229, 239–248 (2016)CrossRefGoogle Scholar
  99. 99.
    S.G. Bachhav, D.R. Patil, Study of polypyrrole-coated MWCNT nanocomposites for ammonia sensing at room temperature. J. Mater. Sci. Chem. Eng. 3, 30–44 (2015)Google Scholar
  100. 100.
    V. Khambalkar, S. Birajdar, P. Adhyapak, S. Kulkarni, Nanocomposite of polypyrrol and silica rods-gold nanoparticles core–shell as an ammonia sensor. Nanotechnology 30(10), 105501 (2019)CrossRefPubMedGoogle Scholar
  101. 101.
    V.V. Chabukswar, M.A. Bora, P.B. Adhav, B.B. Diwate, S. Salunke-Gawali, Ultra-fast, economical and room temperature operating ammonia sensor based on polyaniline/iron oxide hybrid nanocomposites. Polym. Bull. 1–15 (2019)Google Scholar
  102. 102.
    M.C. Santos, O.H.C. Hamdan, S.A. Valverde, E.M. Guerra, R.F. Bianchi, Synthesis and characterization of V2O5/PANI thin films for application in amperometric ammonia gas sensors. Org. Electron. 65, 116–120 (2019)CrossRefGoogle Scholar
  103. 103.
    M. Mateos, M.D. Tchangaï, R. Meunier-Prest, O. Heintz, F. Herbst, J.M. Suisse, M. Bouvet, The low conductive electrodeposited poly (2, 5-dimethoxyaniline) as a key material in a double lateral heterojunction, for sub-ppm ammonia sensing in humid atmosphere. ACS Sens. 4, 740–747 (2019)CrossRefPubMedGoogle Scholar
  104. 104.
    S.B. Kulkarni, Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Hybrid polyaniline-WO3 flexible sensor: a room temperature competence towards NH3 gas. Sens. Actuators B 288, 279–288 (2019)CrossRefGoogle Scholar
  105. 105.
    X. Wang, D. Gu, X. Li, S. Lin, S. Zhao, M.N. Rumyantseva, A.M. Gaskov, Reduced graphene oxide hybridized with WS2 nanoflakes based heterojunctions for selective ammonia sensors at room temperature. Sens. Actuators B 282, 290–299 (2019)CrossRefGoogle Scholar
  106. 106.
    N.A. Travlou, C. Ushay, M. Seredych, E. Rodríguez-Castellón, T.J. Bandosz, Nitrogen-doped activated carbon-based ammonia sensors: effect of specific surface functional groups on carbon electronic properties. ACS Sens. 1(5), 591–599 (2016)CrossRefGoogle Scholar
  107. 107.
    T. Abel, B. Ungerböck, I. Klimant, T. Mayr, Fast responsive, optical trace level ammonia sensor for environmental monitoring. Chem. Cent. J. 6(1), 124 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Y. Wang, W. Jia, T. Strout, A. Schemp, H. Zhang, B. Li, J. Cui, Y. Lei, Ammonia gas sensor using polypyrrole-coated TiO2/ZnO nano fibers. Electroanalysis 21(12), 1432–1438 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical Sciences and Languages, College of Basic SciencesCSKHPKVPalampurIndia
  2. 2.Department of Physics, ARSD CollegeDelhi UniversityDelhiIndia
  3. 3.Department of Agriculture Biotechnology, College of AgricultureCSKHPKVPalampurIndia

Personalised recommendations