Advertisement

Synthesis of Ag/Bi2MoO6 Nanocomposites Using NaBH4 as Reducing Agent for Enhanced Visible-Light-Driven Photocatalysis of Rhodamine B

  • Anukorn PhuruangratEmail author
  • Paveen-On Keereesaensuk
  • K. Karthik
  • Phattranit Dumrongrojthanath
  • Nuengruethai Ekthammathat
  • Somchai Thongtem
  • Titipun ThongtemEmail author
Original Research Full Papers
  • 15 Downloads

Abstract

Heterostructure Ag/Bi2MoO6 nanocomposites with excellent and stable photocatalytic activity for photodegradation of rhodamine B (RhB) were successfully synthesized by precipitation-deposition in the solution containing NaBH4 as a reducing reagent. The heterostructure Ag/Bi2MoO6 nanocomposites with different contents of the loaded Ag were cubic phase of metallic silver nanoparticles adsorbed on surface of orthorhombic Bi2MoO6 nanoplates. The photocatalytic activities of heterostructure Ag/Bi2MoO6 nanocomposites were investigated through photodegradation of RhB and were compared with pure Bi2MoO6 phase induced by Xe visible light irradiation. In this research, the heterostructure 2.5 wt% Ag/Bi2MoO6 nanocomposites exhibited the highest photocatalytic performance with excellent chemical stability and recyclability under visible light irradiation. Furthermore, the mechanism of RhB degradation by heterostructure Ag/Bi2MoO6 nanocomposites was also proposed and discussed.

Keywords

Ag/Bi2MoO6 nanocomposites Photocatalysis Spectroscopy 

Notes

Acknowledgements

We are extremely grateful to Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand for providing financial support through the contact No. SCI6202009S, and Center of Excellence in Materials Science and Technology, Chiang Mai University under the administration of Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand.

References

  1. 1.
    T. Hu, Y. Yang, K. Dai, J. Zhang, C. Liang, Appl. Surf. Sci. 456, 473 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Wang, X. Yang, X. Zhang, X. Ding, Z. Yang, K. Dai, H. Chen, Appl. Surf. Sci. 391, 194 (2017)CrossRefGoogle Scholar
  3. 3.
    K. Wang, X. Xu, L. Lu, A. Li, X. Han, Y. Wu, J. Miao, Y. Jiang, Chem. Phys. Lett. 715, 129 (2019)CrossRefGoogle Scholar
  4. 4.
    N. Güy, M. Özacar, J. Photochem. Photobiol., A 370, 1 (2019)CrossRefGoogle Scholar
  5. 5.
    D. Venkatesh, S. Pavalamalar, K. Anbalagan, J. Inorg. Organomet. Polym. 29(3), 939 (2019)CrossRefGoogle Scholar
  6. 6.
    X. Du, X. Wang, Ceram. Int. 45(1), 1409 (2019)CrossRefGoogle Scholar
  7. 7.
    X. Meng, M. Hao, J. Shi, Z. Cao, W. He, Y. Gao, J. Liu, Z. Li, Adv. Powder Technol. 28(3), 1047 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Lu, K. Zhao, Y. Zhao, S. Zhu, X. Yuan, M. Huo, Y. Zhang, Y. Qiu, Colloids Surf. A 481, 252 (2015)CrossRefGoogle Scholar
  9. 9.
    F. Niu, D. Chen, L. Qin, T. Gao, N. Zhang, S. Wang, Z. Chen, J. Wang, X. Sun, Y. Huang, Sol. Energy Mater. Sol. Cells 143, 386 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Feng, Y. Sun, J. Mu, L. Chen, T. Han, H. Miao, E. Liu, J. Fan, X. Hu, Mater. Lett. 236, 534 (2019)CrossRefGoogle Scholar
  11. 11.
    Y. Jia, H. Ma, C. Liu, Appl. Surf. Sci. 463, 854 (2019)CrossRefGoogle Scholar
  12. 12.
    Z. Hou, F. Chen, J. Wang, C.P. François-Xavier, T. Wintgens, Appl. Catal. B 232, 124 (2018)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, Z. Ma, J. Taiwan Inst. Chem. Eng. 88, 121 (2018)CrossRefGoogle Scholar
  14. 14.
    Y.N. Zhu, J.J. Mu, G.H. Zheng, Z.X. Dai, L.Y. Zhang, Y.Q. Ma, D.W. Zhang, Ceram. Int. 42(15), 17347 (2016)CrossRefGoogle Scholar
  15. 15.
    Q. Wang, K. Sun, Q. Lu, M. Wei, L. Yao, E. Guo, Dyes Pigments 155, 194 (2018)CrossRefGoogle Scholar
  16. 16.
    J. Yi, H. Mo, B. Zhang, J. Song, D. Liu, G. Zhuo, Sep. Purif. Technol. 211, 474 (2019)CrossRefGoogle Scholar
  17. 17.
    K. Jing, W. Ma, Y. Ren, J. Xiong, B. Guo, Y. Song, S. Liang, L. Wu, Appl. Catal. B 243, 10 (2019)CrossRefGoogle Scholar
  18. 18.
    Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073-3273, U.S.A., (2001)Google Scholar
  19. 19.
    L. Jiang, W. Zhu, C. Wang, W. Dong, L. Zhang, G. Wang, B. Chen, C. Li, X. Zhang, Appl. Catal. B 180, 344 (2016)CrossRefGoogle Scholar
  20. 20.
    B. Divband, M. Khatamian, G.R. Kazemi Eslamian, M. Darbandi, Appl. Surf. Sci. 284, 80 (2013)CrossRefGoogle Scholar
  21. 21.
    X. Liu, J. Ruiz, D. Astruc, J. Inorg. Organomet. Polym. 28(2), 399 (2018)CrossRefGoogle Scholar
  22. 22.
    F.I.A.E. Fadl, G.A. Mahmoud, A.A. Mohamed, J. Inorg. Organomet. Polym. 29(2), 332 (2019)CrossRefGoogle Scholar
  23. 23.
    A. Phuruangrat, T. Thongtem, S. Thongtem, J. Mol. Struct. 1161, 108 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Jonjana, A. Phuruangrat, T. Thongtem, B. Kuntalue, S. Thongtem, Mater. Lett. 218, 146 (2018)CrossRefGoogle Scholar
  25. 25.
    A. Phuruangrat, P. Dumrongrojthanath, B. Kuntalue, S. Thongtem, T. Thongtem, Mater. Lett. 196, 256 (2017)CrossRefGoogle Scholar
  26. 26.
    Z. Yang, M. Shen, K. Dai, X. Zhang, H. Chen, Appl. Surf. Sci. 430, 505 (2018)CrossRefGoogle Scholar
  27. 27.
    A. Phuruangrat, S. Putdum, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, Mater. Sci. Semicond. Process. 34, 175 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Wu, Y. Wang, Y. Xu, J. Ming, M. Zhou, R. Xu, Q. Fu, Y. Lei, ACS Appl. Mater. Interfaces 9(28), 23647 (2017)CrossRefGoogle Scholar
  29. 29.
    H.R. Liu, G.X. Shao, J.F. Zhao, Z.X. Zhang, Y. Zhang, J. Liang, X.G. Liu, H.S. Jia, B.S. Xu, J. Phys. Chem. C 116(30), 16182 (2012)CrossRefGoogle Scholar
  30. 30.
    Q. Deng, X. Duan, D.H.L. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, G. Wang, ACS Appl. Mater. Interfaces 4(11), 6030 (2012)CrossRefGoogle Scholar
  31. 31.
    W. Lu, Q. Huang, Y. Zhang, K. Yao, J. Wang, Ind. Eng. Chem. Res. 57(46), 15597 (2018)CrossRefGoogle Scholar
  32. 32.
    F. Chang, Q. Xu, F. Wu, M. Jiao, B. Deng, X. Hu, Mater. Sci. Semicond. Process. 80, 1 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Kang, R.C. Pawar, Y. Pyo, V. Khare, C.S. Lee, J. Exp. Nanosci. 11(4), 259 (2016)CrossRefGoogle Scholar
  34. 34.
    Y. Qiao, X. Meng, Z. Zhang, Appl. Surf. Sci. 470, 645 (2019)CrossRefGoogle Scholar
  35. 35.
    S. Sitthichai, S. Jonjana, A. Phuruangrat, B. Kuntalue, T. Thongtem, S. Thongtem, J. Ceram. Soc. Japan 125(5), 387 (2017)CrossRefGoogle Scholar
  36. 36.
    Y.L. Chan, S.Y. Pung, S. Sreekantan, F.Y. Yeoh, J. Exp. Nanosci. 11(8), 603 (2016)CrossRefGoogle Scholar
  37. 37.
    G.C. Assis, E. Skovroinski, V.D. Leite, M.O. Rodrigues, ACS Appl. Mater. Interfaces 10(9), 8077 (2018)CrossRefGoogle Scholar
  38. 38.
    V. Vaiano, C.A. Jaramillo-Paez, M. Matarangolo, J.A. Navío, M.C. Hidalgo, Mater. Res. Bull. 112, 251 (2019)CrossRefGoogle Scholar
  39. 39.
    V. Vaiano, G. Iervolino, L. Rizzo, Appl. Catal. B 238, 471 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversityHat YaiThailand
  2. 2.Department of PhysicsBharathidasan UniversityTiruchirappalliIndia
  3. 3.Rajamangala University of Technology Lanna Chiang RaiChiang RaiThailand
  4. 4.Program in Chemistry, Faculty of Science and TechnologyBansomdejchaopraya Rajabhat UniversityBangkokThailand
  5. 5.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  6. 6.Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  7. 7.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations