Unraveling the Stable Phase, High Absorption Coefficient, Optical and Mechanical Properties of Hybrid Perovskite CH3NH3PbxMg1–xI3: Density Functional Approach

  • R. O. Agbaoye
  • J. O. Akinlami
  • T. A. Afolabi
  • G. A. AdebayoEmail author


The quest for materials with optimum photovoltaic conversion efficiency leads to the discovery of CH3NH3PbI3, which has shown exciting improvement in power conversion efficiency over the silicon-based technology. This research uses PBEsol–KJPAW and PBE-NC functionals as implemented in Density Functional Theory to study the effects of Mg doping in CH3NH3PbxMg1–xI3 solar cell absorber for x = 0, 0.25, 0.50, 0.75, 1. The Absorption spectrum is computed with Time-Dependent Density Functional Perturbation Theory while the optical gap is calculated by fitting the absorption edge with the Tauc direct and indirect allowed transition. The ground state energy and lattice parameters of CH3NH3PbxMg1–xI3 in its cubic, tetragonal and orthorhombic crystal structures were calculated to determine its equilibrium structure, which appears to be simple cubic for all the compounds of interest. Electronic band gaps were calculated to be in the range 1.16–2.12 eV, suggesting an excellent power conversion efficiency according to the Shockley–Queisser efficiency limit, but the optical gaps extrapolated from the absorption spectrum is larger than the calculated DFT band gap, as a result of underestimation of calculated DFT band gap in Mg-doped CH3NH3PbI3. CH3NH3PbxMg1–xI3 is found to be brittle, moderately incompressible with Vickers hardness in the range of 6.776–9.153 GPa. The brittleness, incompressibility, and hardness all increase with Mg concentration. The amount of solar radiation absorbed and the percentage reflectivity depends on the concentration of Pb while transmitted solar irradiation increase with Mg concentration, these suggest that MAPbI3 may have better power conversion efficiency compared to Mg-doped MAPbI3, but Mg doping will reduce the toxic effect of Pb and produce much more power conversion efficiency than the silicon-based solar cell.


Semiconductors Ab initio calculations Electronic structure Optical properties Mechanical properties 



The authors acknowledge the Abdus Salam International Centre for Theoretical Physics for computational access.

Supplementary material

10904_2019_1187_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1562 kb)


  1. 1.
    S. Chakraborty, W. Xie, N. Mathews, M. Sherburne, R. Ahuja, M. Asta, S.G. Mhaisalkar, Rational design: a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid Perovskites. ACS Energy Lett. 2, 837–845 (2017). CrossRefGoogle Scholar
  2. 2.
    T. Zhou, M. Wang, Z. Zang, X. Tang, L. Fang, Two-dimensional lead-free hybrid halide perovskite using superatom anions with tunable electronic properties. Sol. Energy Mater. Sol. Cells 191, 33–38 (2019). CrossRefGoogle Scholar
  3. 3.
    F. Panzer, C. Li, T. Meier, A. Köhler, S. Huettner, Impact of structural dynamics on the optical properties of methylammonium lead iodide perovskites. Adv. Energy Mater. 7, 1700286 (2017). CrossRefGoogle Scholar
  4. 4.
    C. Han, C. Li, Z. Zang, M. Wang, K. Sun, X. Tang, J. Du, Tunable luminescent CsPb2Br 5 nanoplatelets: applications in light-emitting diodes and photodetectors. Photonics Res. 5, 473–480 (2017). CrossRefGoogle Scholar
  5. 5.
    C. Li, Z. Zang, W. Chen, Z. Hu, X. Tang, W. Hu, K. Sun, X. Liu, W. Chen, Highly pure green light emission of perovskite CsPbBr 3 quantum dots and their application for green light-emitting diodes. Opt. Express 24, 15071–15078 (2016). CrossRefGoogle Scholar
  6. 6.
    B. Yang, M. Wang, X. Hu, T. Zhou, Z. Zang, Highly efficient semitransparent CsPbIBr 2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 57, 718–727 (2019). CrossRefGoogle Scholar
  7. 7.
    M. Wang, Z. Zang, B. Yang, X. Hu, K. Sun, L. Sun, Performance improvement of perovskite solar cells through enhanced hole extraction: the role of iodide concentration gradient. Sol. Energy Mater. Sol. Cells 185, 117–123 (2018)CrossRefGoogle Scholar
  8. 8.
    F. Brivio, A.B. Walker, A. Walsh, Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. Appl. Mater. 1, 042111 (2013). CrossRefGoogle Scholar
  9. 9.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). CrossRefGoogle Scholar
  10. 10.
    J. Li, J. Järvi, P. Rinke, Pair modes of organic cations in hybrid Perovskites: insight from first-principles calculations of supercell models. arXiv preprint, (2017). arXiv:1703.10464
  11. 11.
    Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, W. Huang, Lead-free organic–inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29, 1605005 (2017). CrossRefGoogle Scholar
  12. 12.
    J. Chen, X. Cai, D. Yang, D. Song, J. Wang, J. Jiang, A. Ma, S. Lv, M.Z. Hu, C. Ni, Recent progress in stabilizing hybrid perovskites for solar cell applications. J. Power Sources 355, 98–133 (2017). CrossRefGoogle Scholar
  13. 13.
    Q.Y. Chen, M.Y. Liu, Y. Huang, C. Cao, Y. He, The atomic size effect on hybrid inorganic–organic perovskite CH3NH3BI3 (B = Pb, Sn) from first-principles study. Mod. Phys. Lett. B 31, 1750139 (2017). CrossRefGoogle Scholar
  14. 14.
    M.R. Filip, F. Giustino, Computational screening of homovalent lead substitution in organic–inorganic halide Perovskites. J. Phys. Chem. C 120, 166–173 (2015). CrossRefGoogle Scholar
  15. 15.
    K. Choudhary, Identification of Potential Replacement Materials for Lead in CH3NH3PbI3 using First Principle Calculations. arXiv preprint, (2015). arXiv:1505.01238
  16. 16.
    J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. Van Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014). CrossRefGoogle Scholar
  17. 17.
    A. Filippetti, A. Mattoni, Hybrid perovskites for photovoltaics: insights from first principles. Phys. Rev. B 89, 125203 (2014). CrossRefGoogle Scholar
  18. 18.
    J. Even, L. Pedesseau, E. Tea, S. Almosni, A. Rolland, C. Robert, J.M. Jancu, C. Cornet, C. Katan, J.F. Guillemoles, O. Durand, Density functional theory simulations of semiconductors for photovoltaic applications: hybrid organic-inorganic Perovskites and III/V heterostructures. Int. J. Photoenergy 2014, 1–11 (2014). CrossRefGoogle Scholar
  19. 19.
    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). CrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). CrossRefGoogle Scholar
  21. 21.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). CrossRefGoogle Scholar
  22. 22.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992). CrossRefGoogle Scholar
  23. 23.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964). CrossRefGoogle Scholar
  24. 24.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). CrossRefGoogle Scholar
  25. 25.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009). Google Scholar
  26. 26.
    S. Scandolo, P. Giannozzi, C. Cavazzoni, S. Gironcoli, A. Pasquarello, S. Baroni, First-principles codes for computational crystallography in the Quantum-ESPRESSO package. Z. Krist. Cryst. Mater. 220, 574–579 (2005). Google Scholar
  27. 27.
    P. Haas, F. Tran, P. Blaha, Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 79, 085104 (2009). CrossRefGoogle Scholar
  28. 28.
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). CrossRefGoogle Scholar
  29. 29.
    Y.J. Yun, J.K. Kim, J.Y. Ju, S.K. Choi, W.I. Park, J.Y. Suh, H.K. Jung, Y. Kim, S. Choi, Dual spectra band emissive Eu2+/Mn2+ co-activated alkaline earth phosphates for indoor plant growth novel phosphor converted-LEDs. Phys. Chem. Chem. Phys. 19, 11111–11119 (2017). CrossRefGoogle Scholar
  30. 30.
    G.J. Yang, Y. Kim, Electrochemical properties of Mg-added lithium nickel cobalt oxide induced by structural characteristics depending on the synthetic process. Ceram. Int. 44, 2198–2203 (2018). CrossRefGoogle Scholar
  31. 31.
    S. Kim, S. Choi, K. Lee, G.J. Yang, S.S. Lee, Y. Kim, Self-assembly of core–shell structures driven by low doping limit of Ti in LiCoO2: first-principles thermodynamic and experimental investigation. Phys. Chem. Chem. Phys. 19, 4104–4113 (2017). CrossRefGoogle Scholar
  32. 32.
    A. Taheri, C. Da Silva, C.H. Amon, First-principle phonon thermal transport in graphene: effects of exchange-correlation and type of pseudopotential. J. Appl. Phys. 123, 215105 (2018). CrossRefGoogle Scholar
  33. 33.
  34. 34.
    D.F. Shanno, Conditioning of quasi-Newton methods for function minimization. Math. Comput. 111, 647–656 (1970). CrossRefGoogle Scholar
  35. 35.
    A. Dal Corso, Elastic constants of beryllium: a first-principles investigation. J. Phys.: Condens. Matter 28, 075401 (2016). Google Scholar
  36. 36.
    R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 65, 349 (1952). CrossRefGoogle Scholar
  37. 37.
    O.B. Malcıoğlu, R. Gebauer, D. Rocca, S. Baroni, turboTDDFT–A code for the simulation of molecular spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory. Comput. Phys. Commun. 182, 1744–1754 (2011). CrossRefGoogle Scholar
  38. 38.
    I. Timrov, N. Vast, R. Gebauer, S. Baroni, Electron energy loss and inelastic x-ray scattering cross sections from time-dependent density-functional perturbation theory. Phys. Rev. B 88, 064301 (2013). CrossRefGoogle Scholar
  39. 39.
    I. Timrov, N. Vast, R. Gebauer, S. Baroni, Electron energy loss and inelastic x-ray scattering cross sections from time-dependent density-functional perturbation theory. Phys. Rev. B 91, 139901 (2015). CrossRefGoogle Scholar
  40. 40.
    H.R. Philipp, E.A. Taft, Optical constants of silicon in the region 1 to 10 eV. Phys. Rev. 120, 37 (1960). CrossRefGoogle Scholar
  41. 41.
    J.L. Chukwuneke, C.H. Achebe, S.N. Omenyi, Mycobacterium tuberculosis (M-TB)-human sputum interaction mechanisms energetics. Int. J. Biol. Eng. 5, 23–30 (2015). Google Scholar
  42. 42.
    S.N. Rathod, Structure stability and optical response of lead halide hybrid perovskite photovoltaic materials: a first-principles simulation study, Doctoral Dissertation, Wright State University, 2017Google Scholar
  43. 43.
    R.E. Hummel, Electronic properties of materials, 3rd edn. (Springer, New York, 2011). CrossRefGoogle Scholar
  44. 44.
    J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968). CrossRefGoogle Scholar
  45. 45.
    M.D. Scafetta, A.M. Cordi, J.M. Rondinelli, S.J. May, Band structure and optical transitions in LaFeO3: theory and experiment. J. Phys.: Condens. Matter 26, 505502 (2014)Google Scholar
  46. 46.
    T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A1, 5628–5641 (2013). CrossRefGoogle Scholar
  47. 47.
    F. Brivio, J.M. Frost, J.M. Skelton, A.J. Jackson, O.J. Weber, M.T. Weller, A.R. Goni, A.M. Leguy, P.R. Barnes, A. Walsh, Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 92, 144308 (2015). CrossRefGoogle Scholar
  48. 48.
    W.J. Yin, J.H. Yang, J. Kang, Y. Yan, S.H. Wei, Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015). CrossRefGoogle Scholar
  49. 49.
    J. Jiang, R. Pachter, Y. Yang, L. Bellaiche, Dependence of the electronic and optical properties of methylammonium lead triiodide on ferroelectric polarization directions and domains: a first principles computational study. J. Phys. Chem. C 121, 15375–15383 (2017). CrossRefGoogle Scholar
  50. 50.
    M. Saffari, M.A. Mohebpour, H.R. Soleimani, M.B. Tagani, DFT analysis and FDTD simulation of CH3NH3PbI3−xClx mixed halide perovskite solar cells: role of halide mixing and light trapping technique. J. Phys. D Appl. Phys. 50, 415501 (2017). CrossRefGoogle Scholar
  51. 51.
    Z. Wang, S. Yuan, D. Li, F. Jin, R. Zhang, Y. Zhan, M. Lu, S. Wang, Y. Zheng, J. Guo, Z. Fan, Influence of hydration water on CH3NH3PbI3 perovskite films prepared through one-step procedure. Opt. Express 24, A1431–A1443 (2016). CrossRefGoogle Scholar
  52. 52.
    C. Quarti, E. Mosconi, F. De Angelis, Structural and electronic properties of organo-halide hybrid Perovskites from ab initio molecular dynamics. Phys. Chem. Chem. Phys. 17, 9394–9409 (2015). CrossRefGoogle Scholar
  53. 53.
    R.O. Agbaoye, P.O. Adebambo, J.O. Akinlami, T.A. Afolabi, S.Z. Karazhanov, D. Ceresoli, G.A. Adebayo, Elastic constants and mechanical properties of PEDOT from first principles calculations. Comput. Mater. Sci. 139, 234–242 (2017). CrossRefGoogle Scholar
  54. 54.
    M.L. Tiago, J.R. Chelikowsky, First-principles GW–BSE excitations in organic molecules. Solid State Commun. 136, 333–337 (2005). CrossRefGoogle Scholar
  55. 55.
    M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986). CrossRefGoogle Scholar
  56. 56.
    M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3. Phys. Rev. Appl. 5, 014012 (2016). CrossRefGoogle Scholar
  57. 57.
    B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 252, 1700–1710 (2015). CrossRefGoogle Scholar
  58. 58.
    M. van Schilfgaarde, T. Kotani, S. Faleev, Quasiparticle self-consistent G W theory. Phys. Rev. Lett. 96, 226402 (2006). CrossRefGoogle Scholar
  59. 59.
    J. Feng, Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) Perovskites for solar cell absorbers. Appl. Mater. 2, 081801 (2014). CrossRefGoogle Scholar
  60. 60.
    K. Wang, Z. Liang, X. Wang, X. Cui, Lead replacement in CH3NH3PbI3 perovskites. Adv. Electron. Mater. 1, 1500089 (2015). CrossRefGoogle Scholar
  61. 61.
    F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944). CrossRefGoogle Scholar
  62. 62.
    H. Yao, L. Ouyang, W.Y. Ching, Ab initio calculation of elastic constants of ceramic crystals. J. Am. Ceram. Soc. 90, 3194–3204 (2007). CrossRefGoogle Scholar
  63. 63.
    F. Mouhat, F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B90, 224104 (2014). CrossRefGoogle Scholar
  64. 64.
    E. Guler, M. Guler, Elastic and mechanical properties of cubic diamond under pressure. Chin J Phys 53, 040807-1–040807-11 (2015). Google Scholar
  65. 65.
    A. Šimůnek, J. Vackář, Hardness of covalent and ionic crystals: first-principle calculations. Phys. Rev. Lett. 96, 085501 (2006). CrossRefGoogle Scholar
  66. 66.
    F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, Y. Tian, Hardness of covalent crystals. Phys. Rev. Lett. 91, 015502 (2003). CrossRefGoogle Scholar
  67. 67.
    G.V. Samsonov, Handbook of the physicochemical properties of the elements, 1st edn. (Springer Science & Business Media, Berlin, 2012). Google Scholar
  68. 68.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(2014), 506 (2014). CrossRefGoogle Scholar
  69. 69.
    M.A. Green, M.J. Keevers, Optical properties of intrinsic silicon at 300 K. Prog. Photovolt. 3, 189–192 (1995). CrossRefGoogle Scholar
  70. 70.
    Y. Jiang, M.A. Green, R. Sheng, A. Ho-Baillie, Room temperature optical properties of organic–inorganic lead halide perovskites. Sol. Energy Mater. Sol. Cells 137, 253–257 (2015). CrossRefGoogle Scholar
  71. 71.
    J.M. Ball, S.D. Stranks, M.T. Hörantner, S. Hüttner, W. Zhang, E.J. Crossland, I. Ramirez, M. Riede, M.B. Johnston, R.H. Friend, H.J. Snaith, Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015). CrossRefGoogle Scholar
  72. 72.
    T.D. Nguyen, L.P. Yeo, T.C. Kei, D. Mandler, S. Magdassi, A.I.Y. Tok, Efficient near infrared modulation with high visible transparency using SnO2–WO3 nanostructure for advanced smart windows. Adv. Opt. Mater. 1, 1801389 (2019). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsFederal University of Agriculture, AbeokutaAbeokutaNigeria
  2. 2.Department of ChemistryFederal University of Agriculture, AbeokutaAbeokutaNigeria

Personalised recommendations