Advertisement

Electrical-Field Induced Nonlinear Conductive Characteristics of Polymer Composites Containing SiO2-Decorated Silver Nanowire Hybrids

  • Pin Lu
  • Zhaoming QuEmail author
  • Qingguo Wang
  • Yang Yuan
  • Erwei Cheng
  • Min Zhao
Article
  • 45 Downloads

Abstract

Environment adaptive electromagnetic protection for electronic systems with transmitting and receiving electromagnetic information is increasingly important because of rapid development of information technology and the application of strong electromagnetic pulse. Easy-to-prepare materials with stable electrical-field induced nonlinear conductive characteristics are strongly desired. In this study, the core–shell hybrid nanoparticles of SiO2-decorated silver nanowire hybrids (AgNWs@SiO2) were synthesized via a sol–gel process employed in a polyvinyl alcohol (PVA) matrix material to prepare composites. Microstructure analysis demonstrated that SiO2 insulating layer was well-bonded to the surface of AgNWs. The AgNWs@SiO2/PVA composites exhibited stable and excellent nonlinear conductive behavior under increasingly applied voltage with high filling concentration of the hybrid nanoparticles, the switching threshold voltage of proposed composites can be tuned by optimizing the loading amount of AgNWs@SiO2 hybrid fillers and the thickness of the SiO2 insulating layer. The mechanism of the nonlinear conductive characteristic of the composites was discussed. The shielding effectiveness (SE) of the developed material against the square-wave electromagnetic pulse up to 15 dB, which verified the adaptive protection function of the AgNWs@SiO2/PVA composite.

Keywords

AgNWs@SiO2 hybrids Polymer composites Nonlinear conductive characteristic Switching threshold voltage Electromagnetic pulse protection 

Notes

Funding

This work was financially supported by the Foundation of National Key Laboratory on Electromagnetic Environment Effects (Grant Nos. 614220504030617, 6142205180403).

References

  1. 1.
    T.W. Lee, S.E. Lee, Y.G. Jeong, Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl. Mater. Interfaces 8, 13123 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    D. Xiang, L. Wang, Y. Tang et al., Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures. Polym. Int. 67(2), 227–235 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Liu, L. Wang, B. Cao et al., Designing high-performance electromagnetic wave absorption materials based on polymeric graphene-based dielectric composites: From fabrication technology to periodic pattern design. J. Mater. Chem. C 5(27), 6745–6754 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Zhao, L. Hou, Y. Lu, Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chem. Eng. J. 297, 170–179 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Cao, Q. Meng, Y. Xu, Electrically tunable electromagnetic switches based on zero-index metamaterials. J. Optics 20(2), 025103 (2018)CrossRefGoogle Scholar
  6. 6.
    Qu Zhaoming, Lu Pin, Yang Yuan, Qingguo Wang, Voltage-induced nonlinear conduction properties of epoxy resin/micron-silver particles composites. IOP Conf. Mater. Sci. Eng. 301, 012013 (2018)CrossRefGoogle Scholar
  7. 7.
    W. Jian, S. Yu, S. Luo et al., Investigation of nonlinear I–V behavior of CNTs filled polymer composites. Mater. Sci. Eng. B 206, 55–60 (2016)CrossRefGoogle Scholar
  8. 8.
    Z. Wang, J. K. Nelson, H. Hillborg, et al., Nonlinear conductivity and dielectric response of graphene oxide filled silicone rubber nanocomposites. In: 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, 2012: 40–43Google Scholar
  9. 9.
    J. Xie, J. Hu, J. He et al., Nonlinear dielectric and conductivity properties of ZnO varistor/silicone rubber polymer composites. Gaodianya Jishu/High Volta. Eng. 41(2), 446–452 (2015)Google Scholar
  10. 10.
    Wenhu Yang, Jian Wang, Suibin Luo, Yu. Shuhui et al., ZnO-decorated carbon nanotube hybrids as fillers leading to reversible nonlinear I–V behavior of polymer composites for device protection. ACS Appl. Mater. Interfaces. 8, 35545–35551 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    H. Yongsen, L. Shengtao, F. Michel et al., Nonlinear conductivity of polymer nanocomposites. IEEE Nanatechnol. Mag. 99, 1–1 (2018)Google Scholar
  12. 12.
    A. Kiesow, J.E. Morris, C. Radehaus, A. Heilmann, Switching behavior of plasma polymer films containing silver nanoparticles. J. Appl. Phys. 94(10), 6988–6990 (2003)CrossRefGoogle Scholar
  13. 13.
    S.I. White, R.M. Mutiso, P.M. Vora, D. Jahnke, S. Hsu, J.M. Kikkawa, J. Li, J.E. Fischer, K.I. Winey, Electrical percolation behavior in silver nanowire-polystyrene composites: simulation and experiment. Adv. Funct. Mater. 20(16), 2709–2716 (2010)CrossRefGoogle Scholar
  14. 14.
    S.I. White, P.M. Vora, J.M. Kikkawa, K.I. Winey, Resistive switching in bulk silver nanowire-polystyrene composites. Adv. Funct. Mater. 21(2), 233–240 (2011)CrossRefGoogle Scholar
  15. 15.
    Xiong-Zhi Xiang, Wen-Ya. Gong, Ming-Sheng Kuang et al., Progress in application and preparation of silver nanowires. Rare Met. 35(4), 289–298 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Yang, T. Chen, H. Wang et al., Fused silver nanowires with silica sol nanoparticles for smooth, flexible, electrically conductive and highly stable transparent electrodes. RSC Adv. 8, 13466–13473 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Bai, H. Wang, Y. Hui et al., One-pot rapid synthesis of high aspect ratio silver nanowires for transparent conductive electrodes. Mater. Res. Bull. 102, 79–85 (2018)CrossRefGoogle Scholar
  18. 18.
    Y. Sun, B. Gates, B. Mayers et al., Crystalline silver nanowires by soft solution processing. Nano Lett. 2(2), 165–168 (2002)CrossRefGoogle Scholar
  19. 19.
    W. Zhang, P. Chen, Q. Gao et al., High-concentration preparation of silver nanowires: restraining in situ nitric acidic etching by steel-assisted polyol method. Chem. Mater. 20(5), 1699–1704 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Gao, P. Jiang, D.F. Liu et al., Evidence for the monolayer assembly of poly (vinylpyrrolidone) on the surfaces of silver nanowires. J. Phys. Chem. B 108(34), 12877–12881 (2004)CrossRefGoogle Scholar
  21. 21.
    M. Tsuji, K. Matsumoto, N. Miyamae et al., Rapid preparation of silver nanorods and nanowires by a microwave-polyol method in the presence of Pt catalyst and polyvinylpyrrolidone. Cryst. Growth Des. 7(2), 311–320 (2007)CrossRefGoogle Scholar
  22. 22.
    X.J. Zheng, Z.Y. Jiang, Z.X. Xie et al., Growth of silver nanowires by an unconventional electrodeposition without template. Electrochem. Commun. 9(4), 629–632 (2007)CrossRefGoogle Scholar
  23. 23.
    D. Chen, X. Qiao, X. Qiu et al., Large-scale synthesis of silver nanowires via a solvothermal method. J. Mater. Sci.: Mater. Electron. 22(1), 6–13 (2011)Google Scholar
  24. 24.
    K. Zou, X.H. Zhang, X.F. Duan et al., Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. J. Cryst. Growth 273(1), 285–291 (2004)CrossRefGoogle Scholar
  25. 25.
    K.K. Caswell, C.M. Bender, C.J. Murphy, Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett. 3(5), 667–669 (2003)CrossRefGoogle Scholar
  26. 26.
    C. Chen, L. Wang, H. Yu et al., Morphology-controlled synthesis of silver nanostructures via a seed catalysis process. Nanotechnology 18(11), 115612 (2007)CrossRefGoogle Scholar
  27. 27.
    H.Y. Shi, B. Hu, X.C. Yu et al., Ordering of disordered nanowires: spontaneous formation of highly aligned, ultralong Ag nanowire films at oil–water–air interface. Adv. Func. Mater. 20(6), 958–964 (2010)CrossRefGoogle Scholar
  28. 28.
    J.J. Storhoff, C.A. Mirkin, Programmed materials synthesis with DNA. Chem. Rev. 99(7), 1849–1862 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Z. Ma, A. Wei, J. Ma et al., Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale 10(15), 716–7126 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Fallahi, H. Azizi, I. Ghasemi et al., Preparation and properties of electrically conductive, flexible and transparent silver nanowire/poly (lactic acid) nanocomposites. Org. Electron. 44, 74–84 (2017)CrossRefGoogle Scholar
  31. 31.
    B. Zhang, D. Liu, Y. Liang et al., Flexible transparent and conductive films of reduced-graphene-oxide wrapped silver nanowires. Mater. Lett. 201, 50–53 (2017)CrossRefGoogle Scholar
  32. 32.
    P. Lu, Z. Qu, Q. Wang et al., Conductive switching behavior of epoxy resin/micron-aluminum particles composites. e-Polymers 18(1), 85–89 (2018)CrossRefGoogle Scholar
  33. 33.
    W. Lu, D. Wu, C. Wu et al., Nonlinear DC response in high-density polyethylene/graphite nanosheets composites. J. Mater. Sci. 41(6), 1785–1790 (2006)CrossRefGoogle Scholar
  34. 34.
    W. Lu, H. Lin, G. Chen, Voltage-induced resistivity relaxation in a high-density polyethylene/graphite nanosheet composite. J. Polym. Sci. B 45(7), 860–863 (2010)CrossRefGoogle Scholar
  35. 35.
    Z.H.A.O. Shiyang, W.A.N.G. Qingguo, Q.U. Zhaoming et al., Nonlinear conductive characteristics of AgNWs/PVA composites. Gaodianya Jishu/High Voltage Engineering 44(10), 3328–3332 (2018)Google Scholar
  36. 36.
    F. Fang, W. Yang, S. Yu et al., Mechanism of high dielectric performance of polymer composites induced by BaTiO3-supporting Ag hybrid fillers. Appl. Phys. Lett. 104(13), 132909 (2014)CrossRefGoogle Scholar
  37. 37.
    Q. Liu, X. Yao, X. Zhou et al., Varistor effect in Ag–graphene/epoxy resin nanocomposites. Scripta Mater. 66(2), 113–116 (2012)CrossRefGoogle Scholar
  38. 38.
    S. Zhao, Q. Wang, X. Wang et al., Electric field-induced nonlinear I–V characteristic in a AgNWs/PVA film composite. Adv. Eng. Res. 110, 106–110 (2017)Google Scholar
  39. 39.
    S.C. Pillai, J.M. Kelly, R. Ramesh et al., Advances in the synthesis of ZnO nanomaterials for varistor devices. J. Mater. Chem. C 1, 3268 (2013)CrossRefGoogle Scholar
  40. 40.
    X. Wang, J.K. Nelson, L.S. Schadler et al., Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 17(6), 1687–1696 (2010)CrossRefGoogle Scholar
  41. 41.
    Y.C. Lai, D.Y. Wang, I. Huang et al., Low operation voltage macromolecular composite memory assisted by graphene nanoflakes. J. Mater. Chem. C 1(3), 552–559 (2012)CrossRefGoogle Scholar
  42. 42.
    H.Y. Tsao, Y.J. Lin, Resistive switching behaviors of Au/pentacene/Si-nanowire arrays/heavily doped n-type Si devices for memory applications. Appl. Phys. Lett. 104(5), 3 (2014)Google Scholar
  43. 43.
    J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793–1803 (1963)CrossRefGoogle Scholar
  44. 44.
    P. Sheng, Pair-cluster theory for the dielectric constant of composite media. Phys. Rev. B 22(12), 6364–6368 (1980)CrossRefGoogle Scholar
  45. 45.
    X. Chen, Y.G. Chen, M. Wei, M. Cui, Broadband coaxial holder with continuous-conductor used for shielding effectiveness of materials against electromagnetic pulse. Electron. Lett. 49(8), 532–534 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Key Laboratory on Electromagnetic Environment EffectsArmy Engineering UniversityShijiazhuangChina

Personalised recommendations