Sol–Gel Synthesis of Mesoporous Alumina Considering the Simultaneous Effects of Preparation Parameters by Response Surface Methodology

  • Fatemeh Hosseinzadeh
  • Hossein SarpoolakyEmail author


Sol gel based method assisted by Pluronic P123 has been employed to successfully synthesize mesoporous alumina (MA) with high surface area (363.4 m2 g−1), large pore volume (0.65 cm3 g−1) and narrow pore size distribution (7.42 nm). An optimization study was performed using response surface methodology (RSM) to design the experiments. The use of central composite design (CCD) allowed determination of levels of various parameters including the amount of P123, nitric acid and calcination temperature to be carried out with the interrelation between each parameters evolved simultaneously. Finally, a quadratic model has been introduced to explain the significant effect of preparation parameters on the principal feature of mesoporous alumina (SBET). The test results confirm the validity and adequacy of the developed RSM model and BET surface area obtained from the confirmation test (363.4 m2 g−1) was near to the predicted SBET from the quadratic model (431.25 m2 g−1). However, the experimental and predicted values were in a good agreement. The existence of the difference is proved that SBET is highly dependent on the variety of synthesis parameters. Additionally, the simultaneous interactions among the independent parameters were clearly demonstrated by three dimensional response surface plots.


Mesoporous alumina Sol gel process BET surface area Response surface methodology 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interest.


  1. 1.
    S. Elbasuney, M.A. Elsayed, S.F. Mostafa, W.F. Khalil, J. Inorg. Organomet. Polym Mater. (2019). Google Scholar
  2. 2.
    W. Wu, Z. Wan, W. Chen, M. Zhu, D. Zhang, Microporous Mesoporous Mater. 217, 12 (2015)CrossRefGoogle Scholar
  3. 3.
    X. Yuan, J. Liu, G. Zeng, J. Shi, J. Tong, G. Huang, Renew. Energy 33, 1678 (2008)CrossRefGoogle Scholar
  4. 4.
    G. Castruita, Y.A. Perera-Mercado, E.M. Saucedo-Salazar, J. Inorg. Organomet. Polym Mater. 23, 1145 (2013)CrossRefGoogle Scholar
  5. 5.
    Z. Wu, Q. Li, D. Feng, P.A. Webley, D. Zhao, J. Am. Chem. Soc. 132, 12042 (2010)CrossRefGoogle Scholar
  6. 6.
    K.M. Parida, A.C. Pradhan, J. Das, N. Sahu, J. Mater. Chem. Phys. 113, 244 (2009)CrossRefGoogle Scholar
  7. 7.
    G. Li, Y. Liu, C. Liu, Microporous Mesoporous Mater. 167, 137 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Liu, Y. Liu, Q. Ma, H. He, Chem. Eng. J. 163, 133 (2010)CrossRefGoogle Scholar
  9. 9.
    B. Huang, C.H. Bartholomew, B.F. Woodfield, Microporous Mesoporous Mater. 177, 37 (2013)CrossRefGoogle Scholar
  10. 10.
    B. Huang, C.H. Bartholomew, S.J. Smith, B.F. Woodfield, Microporous Mesoporous Mater. 165, 70 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Vaudry, S. Khodabandeh, M.E. Davis, Chem. Mater. 8, 1451 (1996)CrossRefGoogle Scholar
  12. 12.
    M. Yada, M. Machida, T. Kijima, Chem. Commun. 6, 769 (1996)CrossRefGoogle Scholar
  13. 13.
    J.H. Kim, K.Y. Jung, K.Y. Park, S.B. Cho, Microporous Mesoporous Mater. 128, 85 (2010)CrossRefGoogle Scholar
  14. 14.
    W. Deng, M.W. Toepke, B.H. Shanks, Adv. Funct. Mater. 13, 61 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Ghosh, M.K. Naskar, J. Am. Ceram. Soc. 97, 100 (2014)CrossRefGoogle Scholar
  16. 16.
    Q. Yuan, A.X. Yin, C. Luo, L.D. Sun, Y.W. Zhang, W.T. Duan, H.C. Liu, C.H. Yan, J. Am. Chem. Soc. 130, 3465 (2008)CrossRefGoogle Scholar
  17. 17.
    Z. Chen, C. Weinberger, M. Tiemann, D. Kuckling, Processes 5, 70 (2017)CrossRefGoogle Scholar
  18. 18.
    V. Gonzalez-Pena, C. Márquez-Alvarez, I. Díaz, M. Grande, T. Blasco, J. Pérez-Pariente, Microporous Mesoporous Mater. 80, 173 (2005)CrossRefGoogle Scholar
  19. 19.
    F. Hosseinzadeh, H. Sarpoolaki, H. Hashemi, Int. J. Appl. Ceram. Technol. 11, 681 (2014)CrossRefGoogle Scholar
  20. 20.
    V. Tajer-Kajinebaf, H. Sarpoolaky, T. Mohammadi, Ceram. Int. 40, 1747 (2014)CrossRefGoogle Scholar
  21. 21.
    P.Y. Looi, C.T. Tye, A.R. Mohamed, S. Bhatia, Recent Pat. Corros. Sci. 1, 156 (2011)Google Scholar
  22. 22.
    S. Tabesh, F. Davar, M.R. Loghman-Estarki, J. Alloy. Compd. 730, 441 (2018)CrossRefGoogle Scholar
  23. 23.
    S. Tabesh, F. Davar, M.R. Loghman-Estarki, Ceram. Int. 43, 10247 (2017)CrossRefGoogle Scholar
  24. 24.
    P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature 396, 152 (1998)CrossRefGoogle Scholar
  25. 25.
    S.M. Solberg, C.C. Landry, J. Inorg. Organomet. Polym Mater. 17, 469 (2007)CrossRefGoogle Scholar
  26. 26.
    Y. Kim, B. Lee, J. Yi, Korean J. Chem. Eng. 19, 908 (2002)CrossRefGoogle Scholar
  27. 27.
    S. Ghosh, P. Bose, S. Basak, M.K. Naskar, J. Asian Ceram. Soc. 3, 198 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Liu, P. Zhao, L. Lu, S. Wang, M. Chen, X. Cheng, J. Inorg. Organomet. Polym Mater. (2018). Google Scholar
  29. 29.
    S.M. Morris, P.F. Fulvio, M. Jaroniec, J. Am. Chem. Soc. 130, 15210 (2008)CrossRefGoogle Scholar
  30. 30.
    S.M. Grant, M. Jaroniec, J. Mater. Chem. 22, 86 (2012)CrossRefGoogle Scholar
  31. 31.
    Q. Wu, F. Zhang, J. Yang, Q. Li, B. Tu, D. Zhao, Microporous Mesoporous Mater. 143, 406 (2011)CrossRefGoogle Scholar
  32. 32.
    W. Wu, Z. Wan, M. Zhu, D. Zhang, Microporous Mesoporous Mater. 223, 203–212 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Bleta, P. Alphonse, L. Pin, M. Gressier, M.J. Menu, J. Colloid Interface Sci. 367, 120 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Pure Appl. Chem. 87, 1051 (2015)CrossRefGoogle Scholar
  35. 35.
    G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 41, 207 (1998)CrossRefGoogle Scholar
  36. 36.
    W. Zhang, Chem. Commun. 11, 1185 (1998)CrossRefGoogle Scholar
  37. 37.
    K. Zhang, C. Li, J. Yu, S. Gao, G. Xu, Chin. J. Chem. Eng. 25, 137 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Baca, E. De La Rochefoucauld, E. Ambroise, J.M. Krafft, R. Hajjar, P.P. Man, X. Carrier, J. Blanchard, Microporous Mesoporous Mater. 110, 232 (2008)CrossRefGoogle Scholar
  39. 39.
    R.M. Grudzien, M. Jaroniec, Chem. Commun. 8, 1076 (2005)CrossRefGoogle Scholar
  40. 40.
    A. Caragheorgheopol, A. Rogozea, R. Ganea, M. Florent, D. Goldfarb, J. Phys. Chem. C 114, 28 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and Metallurgical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations