Evaluation of the Catalytic Activities of Some Synthesized Divalent and Trivalent Metal Complexes and Their Inhibition Efficiencies for the Corrosion of Mild Steel in Sulfuric Acid Medium

  • Khadiga M. Takroni
  • Hoda A. El-GhamryEmail author
  • Ahmed Fawzy


The divalent copper, cobalt, nickel and cadmium in addition to the trivalent iron complexes of the ligand named (E)-1-((4,6-dimethylpyrimidin-2-ylimino)methyl)naphthalen-2-ol were synthesized by the reaction of the ligand with different metal chlorides. The Structures and geometry of the metal chelates have been successfully deduced applying various analytical and spectroscopic tools such as elemental analysis, molar conductance, TGA, magnetic moment measurements, IR, 1H-NMR, EI-mass and UV–Vis spectral studies. The X-ray single crystal structure of the ligand has been also discussed. Spectral studies and analytical results supported the monobasic bidentate behavior of the ligand connecting the metal ion centers via deprotonated phenolic OH and imine nitrogen. In the case of Cu(II) complex, the pyrimidine nitrogen took part in coordination to the Cu center. The results ensured the monometallic character of the chelates having 1:2 (M:L) ratio for copper, cobalt and nickel and 1:1 (M:L) ration for iron and cadmium complexes. The molar conductance data ensured that all the metal complexes are non-electrolytic type of complexes. All the complexes have been proved to have octahedral geometry. The antimicrobial activities of the synthesized metal chelates were evaluated against different bacterial and fungal strains. The synthesized ligand and its complexes were also examined as inhibitors for the corrosion of mild steel in 1.0 M H2SO4 at 25 °C using various techniques. The experimental outcomes indicated that the inhibition efficiencies of the tested compounds increased as their concentrations increase. The obtained inhibition efficiencies were interpreted on the basis of strong adsorption of the inhibitor molecules on the surface of mild steel and composing good protection films. The adsorption was found to obey Langmuir adsorption isotherm. The results achieved from all applied techniques are obviously compatible.


Schiff base Metal chelates Structural identification Corrosion Inhibitors 


Supplementary material

10904_2019_1153_MOESM1_ESM.docx (10.5 mb)
Supplementary material 1 (DOCX 10753 kb)


  1. 1.
    P.S. Theivendren, C.R. James, P.V. Dniandev, S.K. Valzita, A mini review of pyrimidine and fused pyrimidine marketed drugs. Res. Pharm. 2, 1–9 (2012)Google Scholar
  2. 2.
    V. Sharma, N. Chitranshi, A.K. Agarwa, Significance and biological importance of pyrimidine in the microbial world. Inter. J. Med. Chem. 2014, 1–31 (2014)Google Scholar
  3. 3.
    M. Sonmez, M. Celebi, I. Berber, Synthesis, spectroscopic and biological studies on the new symmetric Schiff base derived from 2,6-diformyl-4-methylphenol with N-aminopyrimidine. Eur. J. Med. Chem. 45, 1935–1940 (2010)CrossRefGoogle Scholar
  4. 4.
    J.I. Pyo, E.J. Hwang, C.S. Cheong, S.H. Lee, S.W. Lee, I.T. Kim, S.H. Lee, Synthesis and photoluminescent properties of novel furopyrimidine derivatives. Synth. Met. 155, 461–463 (2005)CrossRefGoogle Scholar
  5. 5.
    M. Sonmez, M.E. Hacıyusufoglu, A. Levent, H. Zengin, G. Zengin, Synthesis of pyrimidine Schiff base transition metal complexes: characterization, spectral and electrochemical analyses, and photoluminescence properties. Res. Chem. Intermed. 44, 5531–5546 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Elsherbiny, H. El-Ghamry, Synthesis, characterization, and catalytic activity of new Cu(II) complexes of Schiff base: effective catalysts for decolorization of acid red 37 dye solution. Int J. Chewm. Kinet. 47, 162–173 (2015)CrossRefGoogle Scholar
  7. 7.
    K.C. Gupta, A.K. Sutar, Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev. 252, 1420–1450 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Prakash, D. Adhikari, Application of Schiff bases and their metal complexes—a review. Int. J. Chem. Technol. Res. 3, 1891–1896 (2011)Google Scholar
  9. 9.
    S. Kumar, D.N. Dhar, P.N. Saxena, Applications of metal complexes of Schiff bases-a review. J. Sci. Ind. Res. 68, 181–187 (2009)Google Scholar
  10. 10.
    S. Arulmurugan, H.P. Kavitha, B.R. Venkatraman, Biological activities of Schiff base and its complexes: a review. Rasayan J. Chem. 3, 385–410 (2010)Google Scholar
  11. 11.
    S. Rostamnia, A. Morsali, Basic isoreticular nanoporous metal–organic framework for Biginelli and Hantzsch coupling: IRMOF-3 as a green and recoverable heterogeneous catalyst in solvent-free conditions. RSC Adv. 4, 10514–10518 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Gaber, N.A. El-Wakiel, H.A. El-Ghamry, S.K. Fathalla, Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. J. Mol. Str. 1076, 251–261 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Gaber, H.A. El-Ghamry, F. Atlam, S.K. Fathalla, Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2′-hydroxynaphyhaline. Spectrochim. Acta A 137, 919–929 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Gaber, H.A. El-Ghamry, S.K. Fathalla, Ni(II), Pd(II) and Pt(II) complexes of (1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. Structural, spectroscopic, biological, cytotoxicity, antioxidant and DNA binding. Spectrochim. Acta A 139, 396–404 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Drozdzak, B. Allaert, N. Ledoux, I. Dragutan, V. Dragutan, F. Verpoort, Coord. Chem. Rev. 249, 3055–3074 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Rostamnia, H. Alamgholiloo, X. Liu, Pd-grafted open metal site copper-benzene-1,4-dicarboxylate metal organic frameworks (Cu-BDC MOF’s) as promising interfacial catalysts for sustainable suzuki coupling. J. Colloid Interf. Sci 469, 310–317 (2016)CrossRefGoogle Scholar
  17. 17.
    H. Alamgholiloo, S. Rostamnia, A. Hassankhani, J. Khalafy, M.M. Baradarani, G. Mahmoudi, X. Liu, Stepwise post-modification immobilization of palladium Schiff-base complex on to the OMS-Cu (BDC) metal–organic framework for Mizoroki-Heck cross-coupling reaction. App. Organomet. Chem. 32, e4539 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Samadhiya, A. Halve, Synthetic utility of Schiff bases as potential herbicidal agents. Orient. J. Chem. 17, 87–94 (2001)Google Scholar
  19. 19.
    K.Y. El-Baradie, N.A. El-Wakiel, H.A. El-Ghamry, Synthesis, characterization and corrosion inhibition in acid medium of l-histidine Schiff base complexes. Appl. Organometal. Chem. 29, 117–125 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Behpour, S.M. Ghoreishi, N. Mohammadi, M.S. Niasari, Damage analysis and cracking model of reinforced concrete structures with rebar corrosion. Corros. Sci. 53, 3380–3397 (2011)CrossRefGoogle Scholar
  21. 21.
    C. Kustu, K.C. Emregul, O. Atakol, Schiff bases of increasing complexity as mild steel corrosion inhibitors in 2 M HCl. Corros. Sci. 49, 2800–2814 (2007)CrossRefGoogle Scholar
  22. 22.
    M. Behpour, S.M. Ghoreishi, N. Soltani, M.S. Niasari, The inhibitive effect of some bis-N, S-bidentate Schiff bases on corrosion behaviour of 304 stainless steel in hydrochloric acid solution. Corros. Sci. 51, 1073–1082 (2009)CrossRefGoogle Scholar
  23. 23.
    A. Fawzy, I.A. Zaafarany, H.M. Ali, M. Abdallah, New synthesized amino acids-based surfactants as efficient inhibitors for corrosion of mild Steel in hydrochloric acid medium: kinetics and thermodynamic approach. Int. J. Electrochem. Sci. 13, 4575–4600 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Fawzy, M. Abdallah, I.A. Zaafarany, S.A. Ahmed, I.I. Althagafi, Thermodynamic, kinetic and mechanistic approach to the corrosion inhibition of carbon steel by new synthesized amino acids-based surfactants as green inhibitors in neutral and alkaline aqueous media. J. Mol. Liq. 265, 276–291 (2018)CrossRefGoogle Scholar
  25. 25.
    M. Abdallah, O.A. Hazazi, A. Fawzy, S. El-Shafei, A.S. Fouda, Influence of N-thiazolyl-2-cyanoacetamide derivatives on the corrosion of aluminum in 0.01 M sodium hydroxide. Prot. Met. Phys. Chem. Surf. 50, 659–666 (2014)CrossRefGoogle Scholar
  26. 26.
    M.I. Awad, A.F. Saad, M.R. Shaaban, B.A.A.L. Jahdaly, O.A. Hazazi, New insight into the mechanism of the inhibition of corrosion of mild steel by some amino acids. Int. J. Electrochem. Sci. 12, 1657–1669 (2017)CrossRefGoogle Scholar
  27. 27.
    O.A. Hazazi, A. Fawzy, M.R. Shaaban, M.I. Awad, Enhanced 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol inhibition of corrosion of mild steel in 0.5 M H2SO4 by Cu(II). Int. J. Electrochem. Sci. 9, 1378–1389 (2014)Google Scholar
  28. 28.
    M. Abdallah, A.S. Fouda, I. Zaafarany, A. Fawzy, Y. Abdallah, Corrosion inhibition of iron in sulphuric acid solution by antibacterial cephalosporin. J. Am. Sci. 9, 209–215 (2013)Google Scholar
  29. 29.
    F. Bentiss, M. Lagrenée, M. Traisnel, J.C. Hornez, The corrosion inhibition of mild steel in acidic media by a new triazole derivative. Corros. Sci. 41, 789–803 (1999)CrossRefGoogle Scholar
  30. 30.
    O.A. Hazazi, A. Fawzy, M.I. Awad, Synergistic effect of halides on the corrosion inhibition of mild steel in H2SO4 by a triazole derivative: kinetics and thermodynamic studies. Int. J. Electrochem. Sci. 9, 4086–4103 (2014)Google Scholar
  31. 31.
    F. Bentiss, M. Lagrenée, M. Traisnel, 2,5-bis(n-pyridyl)-1 3,4-oxadiazoles as corrosion inhibitors for mild steel in acidic media. J. Corros. 56, 733–742 (2000)CrossRefGoogle Scholar
  32. 32.
    M. Abdallah, M.M. Salem, A. Fawzy, E.M. Mabrouk, Electrochemical behavior of nickel alloys and stainless steel in HNO3 using cyclic voltammetry technique. J. Mater. Env. Sci. 8, 1320–1327 (2017)Google Scholar
  33. 33.
    R.F. Godec, M.G. Pavlovic, Synergistic effect between non-ionic surfactant and halide ions in the forms of inorganic or organic salts for the corrosion inhibition of stainless-steel X4Cr13 in sulphuric acid. Corros. Sci. 58, 192–201 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Abdallah, I. Zaafarany, A. Fawzy, M.A. Radwan, E. Abdfattah, Inhibition of aluminum corrosion in hydrochloric acid by cellulose and chitosan. J. Am. Sci. 9, 580–586 (2013)Google Scholar
  35. 35.
    O.A. Hazazi, A. Fawzy, M.I. Awad, Sulfachloropyridazine as an eco-friendly inhibitor for corrosion of mild steel in H2SO4 solution. Chem. Sci. Rev. Lett. 4, 67–79 (2015)Google Scholar
  36. 36.
    A.A. Osowole, R. Kempe, R. Schobert, K. Effenberger, Synthesis, spectroscopic, thermal, and in vitro anticancer properties of some M(II) complexes of 3-(-1-(4,6-dimethyl-2-pyrimidinylimino)methyl-2-naphthol. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 41, 825–833 (2011)CrossRefGoogle Scholar
  37. 37.
    N.H. Yarkandi, H.A. El-Ghamry, M. Gaber, Synthesis, spectroscopic and DNA binding ability of CoII, NiII, CuII and ZnII complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl) methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt(II) complex. Mater. Sci. Eng. C 75, 1059–1067 (2017)CrossRefGoogle Scholar
  38. 38.
    A. Bauer, W. Kirby, C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966)CrossRefGoogle Scholar
  39. 39.
    M. Pfaller, L. Burmeister, M.A. Bartlett, M.G. Rinaldi, J. Clin. Microbiol. 26, 1437–1441 (1988)Google Scholar
  40. 40.
    F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Open, R. Taylor, Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 12, S1–19 (1987)CrossRefGoogle Scholar
  41. 41.
    R. Pradhan, M. Banik, D.B. Cordes, A.M.Z. Slawin, N.C. Saha, Synthesis, characterization, X-ray crystallography and DNA binding activities of Co(III) and Cu(II) complexes with a pyrimidine-based Schiff. Inorg. Chim. Acta 442, 70–80 (2016)CrossRefGoogle Scholar
  42. 42.
    L.B. Tang, G.N. Mu, G.H. Liu, The effect of neutral red on the corrosion inhibition of cold rolled steel in 1.0 M hydrochloric acid. Corros. Sci. 45, 2251–2262 (2003)CrossRefGoogle Scholar
  43. 43.
    A. Majumder, G.M. Rosair, A. Mallick, N. Chattopadhyay, S. Mitra, Synthesis, structures and fluorescence of nickel, zinc and cadmium complexes with the N, N, O-tridentate Schiff base N-2-pyridylmethylidene-2-hydroxy-phenylamine. Polyhedron 25, 1753–1762 (2006)CrossRefGoogle Scholar
  44. 44.
    K. Singh, M.S. Barwa, P. Tyagi, Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Eur. J. Med. Chem. 41, 147–153 (2006)CrossRefGoogle Scholar
  45. 45.
    H.A. El-Ghamry, S.K. Fathalla, M. Gaber, Synthesis, structural characterization and molecular modelling of bidentateazo dye metal complexes: DNA interaction to antimicrobial and anticancer activities. Appl. Organometal. Chem. 32, e4136 (2017)CrossRefGoogle Scholar
  46. 46.
    R. Holman, M.P. Hendrich, L. Que Jr., EPR studies of a dinickel complex in its (II, II) and (II, III) oxidation states. Inorg. Chem. 31, 937–939 (1992)CrossRefGoogle Scholar
  47. 47.
    R. Paulpandiyan, N. Raman, DNA binding propensity and nuclease efficacy of biosensitive Schiff base complexes containing pyrazolone moiety: synthesis and characterization. J. Mol. Str. 1125, 374–382 (2016)CrossRefGoogle Scholar
  48. 48.
    H. Liu, H. Wang, F. Gao, D. Niu, Z. Lu, Self-assembly of copper(II) complexes with substituted aroylhydrazones and monodentate N-heterocycles: synthesis, structure and properties. J. Coord. Chem. 60, 2671–2678 (2007)CrossRefGoogle Scholar
  49. 49.
    A.M. Gouda, H.A. El-Ghamry, T.M. Bawazeer, T.A. Farghaly, A.N. Abdalla, A. Aslam, Antitumor activity of pyrrolizines and their Cu(II) complexes: design, synthesis and cytotoxic screening with potential apoptosis-inducing activity. Eur. J. Med. Chem. 145, 350–359 (2018)CrossRefGoogle Scholar
  50. 50.
    A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd edn. (Elsevier, Amsterdam, 1984)Google Scholar
  51. 51.
    K. El-Baradie, R. El-Sharkawy, H. El-Ghamry, K. Sakai, Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfadrugazodyes and their application for wastewater treatment. Spectrochim. Acta A 121, 180–187 (2014)CrossRefGoogle Scholar
  52. 52.
    E.V. Zahınos, M.A.M. Rogado, F.L. Giles, F.J.B. Garcıa, Coordination behaviour of Schiff base 2-acetyl-2-thiazoline hydrazone (ATH) towards cobalt(II), nickel(II) and copper(II). Polyhedron 27, 879–886 (2008)CrossRefGoogle Scholar
  53. 53.
    Y.K. Abdel-Monem, S.A. Abouel-Enein, S.M. El-Seady, Synthesis, characterization and molecular modeling of some transition metal complexes of Schiff base derived from 5-aminouracil and 2-benzoyl pyridine. J. Mol. Struct. 1152, 115–127 (2018)CrossRefGoogle Scholar
  54. 54.
    D.N. Kumar, B.S. Garg, Synthesis and spectroscopic studies of complexes of zinc(II) with N2O2 donor groups. Spectrochim. Acta A 64, 141–147 (2006)CrossRefGoogle Scholar
  55. 55.
    R.S. Joseyphus, M.S. Nair, Antibacterial and antifungal studies on some Schiff base complexes of zinc(II). Microbiology 36, 93–98 (2008)Google Scholar
  56. 56.
    G.N. Mu, X.H. Li, Q. Qu, J. Zhou, Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution. Corros. Sci. 48, 445–459 (2006)CrossRefGoogle Scholar
  57. 57.
    C. Hsu, F. Mansfeld, Technical note concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57, 747–748 (2001)CrossRefGoogle Scholar
  58. 58.
    M. Christov, A. Popova, Adsorption characteristics of corrosion inhibitors from corrosion rate measurements. Corros. Sci. 46, 1613–1620 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Khadiga M. Takroni
    • 1
  • Hoda A. El-Ghamry
    • 1
    • 2
    Email author
  • Ahmed Fawzy
    • 1
    • 3
  1. 1.Chemistry Department, Faculty of Applied ScienceUmm Al-Qura UniversityMeccaSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceTanta UniversityTantaEgypt
  3. 3.Chemistry Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations