Thermodynamic and Kinetic Studies of Removal Process of Hexavalent Chromium Ions from Water by Using Bio-conducting Starch–Montmorillonite/Polyaniline Nanocomposite

  • Ali OladEmail author
  • Maryam Bastanian
  • Haleh Bakht Khosh Hagh


In this work, starch–montmorillonite/polyaniline (St–Mt/PANI) nanocomposite was prepared by in situ polymerization of aniline on the surface of starch–montmorillonite (St–Mt) nanocomposite and was applied for adsorption and removal of Cr(VI) ions from aqueous solution in batch mode. Various characterization techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were utilized to characterize and evaluate the prepared nanocomposite. In order to verify the optimum conditions for adsorption of Cr(VI) ions by St–Mt nanocomposite, as powder, different parameters affecting the adsorption efficiency including pH of the solution, the initial concentration of Cr(VI) ions, contact time and adsorbent dosage were investigated. According to the results, the best conditions for Cr(VI) removal was obtained as pH 2, C0 = 10 mg L−1, time = 15 min and M = 0.05 g. The adsorption process was well fitted by Langmuir isotherm model and the maximum adsorption capacity was calculated as 208.33 mg g−1. Also, the kinetic adsorption process was well described by the pseudo-second-order kinetic model. The study of thermodynamic parameters confirmed the spontaneous and exothermic nature of adsorption and removal process. Desorption tests revealed the reusability of St–Mt/PANI nanocomposite for three adsorption cycles and so the method is almost cost efficient.


Nanocomposite Polyaniline Starch Montmorillonite Adsorption Hexavalent chromium 



The financial support of this research by the University of Tabriz is gratefully acknowledge.


  1. 1.
    J. Yang, M. Yu, W. Chen, Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: kinetics, equilibrium and thermodynamics. J. Ind. Eng. Chem. 21, 414–422 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Maleki, B. Hayati, M. Naghizadeh, S.W. Joo, Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. J. Ind. Eng. Chem. 28, 211–216 (2015)CrossRefGoogle Scholar
  3. 3.
    S.I. Rathnayake, W.N. Martens, Y. Xi, R.L. Frost, G.A. Ayoko, Remediation of Cr(VI) by inorganic-organic clay. J. Colloid Interface Sci. 490, 163–173 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Rengaraj, K.-H. Yeon, S.-H. Moon, Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 87, 273–287 (2001)CrossRefGoogle Scholar
  5. 5.
    G. Wang, Y. Hua, X. Su, S. Komarneni, S. Ma, Y. Wang, Cr (VI) adsorption by montmorillonite nanocomposites. Appl. Clay Sci. 124, 111–118 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Çimen, F. Kılıçel, G. Arslan, Removal of chromium ions from waste waters using reverse osmosis AG and SWHR membranes. Russ. J. Phys. Chem. A 88, 845–850 (2014)CrossRefGoogle Scholar
  7. 7.
    L. Alidokht, A. Khataee, A. Reyhanitabar, S. Oustan, Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 270, 105–110 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Liu, W. Zhou, X. Qian, J. Shen, X. An, Polyaniline/cellulose fiber composite prepared using persulfate as oxidant for Cr(VI)-detoxification. Carbohydr. Polym. 92, 659–661 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Kong, J. Wei, Z. Wang, T. Sun, C. Yao, Z. Chen, Heavy metals removal from solution by polyaniline/palygorskite composite. J. Appl. Polym. Sci. 122, 2054–2059 (2011)CrossRefGoogle Scholar
  10. 10.
    R. Karthik, S. Meenakshi, Removal of hexavalent chromium ions using polyaniline/silica gel composite. J. Water Process Eng. 1, 37–45 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Olad, R. Nabavi, Application of polyaniline for the reduction of toxic Cr(VI) in water. J. Hazard. Mater. 147, 845–851 (2007)CrossRefGoogle Scholar
  12. 12.
    B.S. Kadu, Y.D. Sathe, A.B. Ingle, R.C. Chikate, K.R. Patil, C.V. Rode, Efficiency and recycling capability of montmorillonite supported Fe–Ni bimetallic nanocomposites towards hexavalent chromium remediation. Appl. Catal. B 104, 407–414 (2011)CrossRefGoogle Scholar
  13. 13.
    S.-L. Bee, M. Abdullah, S.-T. Bee, L.T. Sin, A. Rahmat, Polymer nanocomposites based on silylated-montmorillonite: a review. Prog. Polym. Sci. 85, 57–82 (2018)CrossRefGoogle Scholar
  14. 14.
    L. Ai, L. Li, Efficient removal of organic dyes from aqueous solution with ecofriendly biomass-derived carbon@ montmorillonite nanocomposites by one-step hydrothermal process. Chem. Eng. J. 223, 688–695 (2013)CrossRefGoogle Scholar
  15. 15.
    N. Ghaemi, S.S. Madaeni, A. Alizadeh, H. Rajabi, P. Daraei, Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. J. Membr. Sci. 382, 135–147 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Witczak, R. Ziobro, L. Juszczak, J. Korus, Starch and starch derivatives in gluten-free systems—a review. J. Cereal Sci. 67, 46–57 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Olad, F.F. Azhar, M. Shargh, S. Jharfi, Application of response surface methodology for modeling of reactive dye removal from solution using starch-montmorillonite/polyaniline nanocomposite. Polym. Eng. Sci. 54, 1595–1607 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Ren, T. Shen, F. Wang, X. Wang, Z. Zhang, Study on biodegradable starch/OMMT nanocomposites for packaging applications. J. Polym. Environ. 17, 203 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Almasi, B. Ghanbarzadeh, A.A. Entezami, Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol. 46, 1–5 (2010)CrossRefGoogle Scholar
  20. 20.
    F. Chivrac, E. Pollet, P. Dole, L. Avérous, Starch-based nano-biocomposites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr. Polym. 79, 941–947 (2010)CrossRefGoogle Scholar
  21. 21.
    R. Karthik, S. Meenakshi, Synthesis, characterization and Cr(VI) uptake study of polyaniline coated chitin. Int. J. Biol. Macromol. 72, 235–242 (2015)CrossRefGoogle Scholar
  22. 22.
    R. Karthik, S. Meenakshi, Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int. J. Biol. Macromol. 72, 711–717 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Qiu, C. Xu, D. Sun, H. Yi, J. Guo, X. Zhang, H. Qu, M. Guerrero, X. Wang, N. Noel, Polyaniline coated ethyl cellulose with improved hexavalent chromium removal. ACS Sustain. Chem. Eng. 2, 2070–2080 (2014)CrossRefGoogle Scholar
  24. 24.
    L. Chuecas, J. Riley, The spectrophotometric determination of chromium in sea water. Anal. Chim. Acta 35, 240–246 (1966)CrossRefGoogle Scholar
  25. 25.
    C. Dispenza, C.L. Presti, C. Belfiore, G. Spadaro, S. Piazza, Electrically conductive hydrogel composites made of polyaniline nanoparticles and poly (N-vinyl-2-pyrrolidone). Polymer 47, 961–971 (2006)CrossRefGoogle Scholar
  26. 26.
    A. Olad, B. Naseri, Preparation, characterization and anticorrosive properties of a novel polyaniline/clinoptilolite nanocomposite. Prog. Org. Coat. 67, 233–238 (2010)CrossRefGoogle Scholar
  27. 27.
    H. Liu, D. Chaudhary, S.-I. Yusa, M.O. Tadé, Glycerol/starch/Na + -montmorillonite nanocomposites: a XRD, FTIR, DSC and 1 H NMR study. Carbohydr. Polym. 83, 1591–1597 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Namazi, A. Dadkhah, M. Mosadegh, New biopolymer nanocomposite of starch-graft polystyrene/montmorillonite clay prepared through emulsion polymerization method. J. Polym. Environ. 20, 794–800 (2012)CrossRefGoogle Scholar
  29. 29.
    V. Janaki, K. Vijayaraghavan, B.-T. Oh, K.-J. Lee, K. Muthuchelian, A. Ramasamy, S. Kamala-Kannan, Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydr. Polym. 90, 1437–1444 (2012)CrossRefGoogle Scholar
  30. 30.
    D. Chaudhuri, D. Sarma, BF 3-doped polyaniline: a novel conducting polymer. Pramana 67, 135–139 (2006)CrossRefGoogle Scholar
  31. 31.
    H.X. Huang, K.K. Yang, Y.Z. Wang, X.L. Wang, J. Li, Synthesis, characterization, and thermal properties of a novel pentaerythritol-initiated star-shaped poly (p-dioxanone). J. Polym. Sci., Part A: Polym. Chem. 44, 1245–1251 (2006)CrossRefGoogle Scholar
  32. 32.
    A.G. Yavuz, E. Dincturk-Atalay, A. Uygun, F. Gode, E. Aslan, A comparison study of adsorption of Cr(VI) from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites. Desalination 279, 325–331 (2011)CrossRefGoogle Scholar
  33. 33.
    P. Müller, É. Kapin, E. Fekete, Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films. Carbohydr. Polym. 113, 569–576 (2014)CrossRefGoogle Scholar
  34. 34.
    T.-T. Tee, L.T. Sin, R. Gobinath, S.-T. Bee, D. Hui, A. Rahmat, Q. Fang, Investigation of nano-size montmorillonite on enhancing polyvinyl alcohol–starch blends prepared via solution cast approach. Compos. B Eng. 47, 238–247 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Baral, N. Das, G.R. Chaudhury, S. Das, A preliminary study on the adsorptive removal of Cr(VI) using seaweed, Hydrilla verticillata. J. Hazard. Mater. 171, 358–369 (2009)CrossRefGoogle Scholar
  36. 36.
    K.Z. Elwakeel, Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination 250, 105–112 (2010)CrossRefGoogle Scholar
  37. 37.
    V. Uskoković, Composites comprising cholesterol and carboxymethyl cellulose. Colloids Surf. B 61, 250–261 (2008)CrossRefGoogle Scholar
  38. 38.
    A. Rashidzadeh, A. Olad, Novel polyaniline/poly (vinyl alcohol)/clinoptilolite nanocomposite: dye removal, kinetic, and isotherm studies. Desalination Water Treat. 51, 7057–7066 (2013)CrossRefGoogle Scholar
  39. 39.
    M.R. Samani, S.M. Borghei, A. Olad, M.J. Chaichi, Removal of chromium from aqueous solution using polyaniline–poly ethylene glycol composite. J. Hazard. Mater. 184, 248–254 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Akram, H.N. Bhatti, M. Iqbal, S. Noreen, S. Sadaf, Biocomposite efficiency for Cr (VI) adsorption: kinetic, equilibrium and thermodynamics studies. J. Environ. Chem. Eng. 5, 400–411 (2017)CrossRefGoogle Scholar
  41. 41.
    T.A. Saleh, A.M. Muhammad, S.A. Ali, Synthesis of hydrophobic cross-linked polyzwitterionic acid for simultaneous sorption of Eriochrome black T and chromium ions from binary hazardous waters. J. Colloid Interface Sci. 468, 324–333 (2016)CrossRefGoogle Scholar
  42. 42.
    R. Karthik, S. Meenakshi, Facile synthesis of cross linked-chitosan–grafted-polyaniline composite and its Cr(VI) uptake studies. Int. J. Biol. Macromol. 67, 210–219 (2014)CrossRefGoogle Scholar
  43. 43.
    V. Janaki, M.-N. Shin, S.-H. Kim, K.-J. Lee, M. Cho, A. Ramasamy, B.-T. Oh, S. Kamala-Kannan, Application of polyaniline/bacterial extracellular polysaccharide nanocomposite for removal and detoxification of Cr(VI). Cellulose 21, 463–472 (2014)CrossRefGoogle Scholar
  44. 44.
    I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  45. 45.
    P.A. Kumar, S. Chakraborty, M. Ray, Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber. Chem. Eng. J. 141, 130–140 (2008)CrossRefGoogle Scholar
  46. 46.
    R. Foroutan, R. Mohammadi, B. Ramavandi, M. Bastanian, Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon. Korean J. Chem. Eng. 35, 2207–2219 (2018)CrossRefGoogle Scholar
  47. 47.
    Y. Zheng, W. Wang, D. Huang, A. Wang, Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal. Chem. Eng. J. 191, 154–161 (2012)CrossRefGoogle Scholar
  48. 48.
    R. Nithya, T. Gomathi, P. Sudha, J. Venkatesan, S. Anil, S.-K. Kim, Removal of Cr(VI) from aqueous solution using chitosan-g-poly (butyl acrylate)/silica gel nanocomposite. Int. J. Biol. Macromol. 87, 545–554 (2016)CrossRefGoogle Scholar
  49. 49.
    E.M. Kalhori, K. Yetilmezsoy, N. Uygur, M. Zarrabi, R.M.A. Shmeis, Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Appl. Surf. Sci. 287, 428–442 (2013)CrossRefGoogle Scholar
  50. 50.
    A. Olad, F. Farshi Azhar, A study on the adsorption of chromium (VI) from aqueous solutions on the alginate-montmorillonite/polyaniline nanocomposite. Desalination and Water Treat. 52, 2548–2559 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ali Olad
    • 1
    Email author
  • Maryam Bastanian
    • 1
  • Haleh Bakht Khosh Hagh
    • 1
  1. 1.Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations