Advertisement

Phytochemicals and Morphological Influence of Aloe Barbadensis Miller Extract Capped Biosynthesis of CdO Nanosticks

  • Gopi Somasundaram
  • Jayaprakash RajanEmail author
  • P. Sangaiya
  • R. Dilip
Article
  • 8 Downloads

Abstract

The present work reports the biosynthesis of CdO nanosticks by the green method using Aloe Barbadensis Miller (ABM) extract and it acted as a capping and stabilizing agent. This type of prepared sample was investigated by some standard studies. Crystallite size (28 nm) and structure (SC) were analyzed from XRD pattern. The optical properties of CdO nanoparticles are analyzed by UV–Vis–DRS and PL spectra. The FT-IR spectra exhibit the functional group present in the CdO nanosticks prepared from ABM extract due to its vibrational property. GC–MS analysis predicts the 35 phytochemicals present in the ABM extract. The surface morphology and elemental were investigated by HRTEM, FESEM and EDAX analysis and it displays a nanosticks structure. The nanosticks formation mechanism was also described. The antibacterial and fungal activities of ABM extract CdO nanoparticles are tested for different bacterial and fungal organism under the zone inhabitation method.

Keywords

Biomaterials X-ray techniques Functional Semiconductors 

Notes

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    A.A. Kashale et al., Compos. Part B 99, 297–304 (2016).  https://doi.org/10.1016/j.compositesb.2016.06.015 CrossRefGoogle Scholar
  2. 2.
    S. Kumar et al., Mater. Res. Bull. 90, 224–231 (2017).  https://doi.org/10.1016/j.materresbull.2017.02.044 CrossRefGoogle Scholar
  3. 3.
    K. Elumalai et al., Spectrochim Acta A 136, 1052–1057 (2015).  https://doi.org/10.1016/j.saa.2014.09.129 CrossRefGoogle Scholar
  4. 4.
    S. Ambika et al., Adv. Power Technol. 2015, 1294–1299 (2015)Google Scholar
  5. 5.
    V.K. Gupta et al., J. Colloid Interface Sci. 504, 164–170 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Tadjarodi, M. Imani, H. Kerdari, K. Bijanzad, D. Khaledi, M. Rad, Nanomater. Nanotechnol. 4, 4–16 (2014)CrossRefGoogle Scholar
  7. 7.
    S.D. Bunge, K.M. Krueger, T.J. Boyle, M.A. Rodriguez, T.J. Headley, V.L. Colvin, J. Mater. Chem. 13, 1705–1709 (2003)CrossRefGoogle Scholar
  8. 8.
    R. Srinivasaraghavan, R. Chandiramouli, B.G. Jeyaprakash, S. Seshadri, Spectrochim. Acta Part A 102, 242–249 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Choi, G.H. Jeong, S.W. Kim, Bull. Korean Chem. Soc. 32, 3851–3852 (2011)CrossRefGoogle Scholar
  10. 10.
    Q. Wang, G. Wang, X. Wang, Int. J. Nanotechnol. 4, 110–118 (2007)CrossRefGoogle Scholar
  11. 11.
    A. Askarinejad, A. Morsali, Chem. Eng. J. 150, 569–571 (2009)CrossRefGoogle Scholar
  12. 12.
    J.H. Kim, Y.C. Hong, H.S. Uhm, Jpn. J. Appl. Phys. 46, 4351 (2007)CrossRefGoogle Scholar
  13. 13.
    Y.C. Zhang, G.L. Wang, Mater. Lett. 62, 673–675 (2008)CrossRefGoogle Scholar
  14. 14.
    T. Prakash, G. Neri, E.R. Kumar, J. Alloys. Compd. 624, 258–265 (2015)CrossRefGoogle Scholar
  15. 15.
    W.W. Wang, Y.J. Zhu, Inorg. Chem. Commun. 7, 1003–1005 (2004)CrossRefGoogle Scholar
  16. 16.
    T. Athar, S. Shafi, A.A. Khan, Mater. Focus 3, 397–400 (2014)CrossRefGoogle Scholar
  17. 17.
    N. Thovhogi et al., J. Alloys Compd. 655, 314–320 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Nagabhushana et al., J. Alloys Compd. 669, 232–239 (2016)CrossRefGoogle Scholar
  19. 19.
    F.T. Thema et al., J. Alloys Compd. 646, 1043–1048 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Gopi et al., J. Inorg. Organomet. Polym. 28, 152–167 (2018).  https://doi.org/10.1007/s10904-017-0695-5 CrossRefGoogle Scholar
  21. 21.
    A. Azizi et al., Mater. Lett. 116, 275–277 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Sengani et al., OpenNano 2, 37–46 (2017).  https://doi.org/10.1016/j.onano.2017.07.001 CrossRefGoogle Scholar
  23. 23.
    U. Chavez et al., Thin Solid Films 592, 110–117 (2015).  https://doi.org/10.1016/j.tsf.2015.08.052 CrossRefGoogle Scholar
  24. 24.
    C.V. Reddy, J. Phys. Chem. Solids 112, 20–28 (2018)CrossRefGoogle Scholar
  25. 25.
    S. Rajaboopathi et al., Mater. Sci. Semicond. Process. 59, 56–67 (2017)CrossRefGoogle Scholar
  26. 26.
    T. Wang, Sens. Actuators B 250, 692–702 (2017)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    P. Margan, Ultrason. Sonochem. 40, 323–332 (2018)CrossRefGoogle Scholar
  29. 29.
    A. Umar et al., Ceram. Int. 44(5), 5017–5024 (2018)CrossRefGoogle Scholar
  30. 30.
    S. Benzitouni et al., Optik 156, 949–960 (2018)CrossRefGoogle Scholar
  31. 31.
    R. Saravanan, F. Gracia, J. Mol. Struct. 209, 374–380 (2015)Google Scholar
  32. 32.
    E. Mosquera, J. Solid State Chem. 206, 265–271 (2013)CrossRefGoogle Scholar
  33. 33.
    L.J. Zhou, Sens. Actuators B 197, 370–375 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Sudheer Khan, J. Photochem. Photobiol. B 142, 1–7 (2015)CrossRefGoogle Scholar
  35. 35.
    K. Karthik, Spectrochim. Acta Part A 139, 7–12 (2015)CrossRefGoogle Scholar
  36. 36.
    X. Cai, Sens. Actuators B 198, 402–410 (2014)CrossRefGoogle Scholar
  37. 37.
    K.J. Trilok, Colloid Interface Sci. 487, 378–387 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gopi Somasundaram
    • 1
  • Jayaprakash Rajan
    • 1
    Email author
  • P. Sangaiya
    • 1
  • R. Dilip
    • 1
  1. 1.Nanotechnology Laboratory, Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia

Personalised recommendations