Advertisement

Polyaniline/Cu(II) Metal-organic Frameworks Composite for High Performance Supercapacitor Electrode

  • Zeinab Neisi
  • Zeinab Ansari-AslEmail author
  • Amin Shiralizadeh Dezfuli
Article
  • 38 Downloads

Abstract

The specific capacitance of supercapacitors can be benefited by the porosity of the metal-organic frameworks (MOFs). In this study, a nanocomposite of polyaniline-Cu(II) MOFs (PANI/Cu-MOF) was fabricated by a two-step process including chemical polymerization of aniline and room temperature synthesis of Cu–MOFs in the presence of the as-prepared polyaniline. The obtained compounds were characterized by FT-IR, PXRD, SEM, EDAX mapping, and XPS techniques. PXRD patterns revealed the amorphous character of the nanocomposite. FT-IR and EDS-mapping demonstrate the formation of PANI/Cu–MOF nanocomposite. SEM was applied for studying the PANI/Cu-MOF morphology. As demonstrated by CV (cyclic voltammetry), GCD (galvanostatic charge/discharge), and EIS (electrochemical impedance spectroscopy), PANI/Cu-MOF composite shows better capacitive properties compared to the pure Cu-MOF. Furthermore, the results of CVs indicate that the PANI/Cu-MOF composite has a higher capacitance (734 F g−1 at 5 mV s−1) with good electrochemical cycling stability.

Keywords

Polyaniline Metal-organic frameworks Nanocomposite Supercapacitor 

Notes

Acknowledgements

This study was financially supported by Shahid Chamran University of Ahvaz (Grant No. 1396).

References

  1. 1.
    A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)CrossRefGoogle Scholar
  2. 2.
    T. Brousse, D. Bélanger, J.W. Long, J. Electrochem. Soc. 162, A5185–A5189 (2015)CrossRefGoogle Scholar
  3. 3.
    P. Simon, Y. Gogotsi, Nanoscience And Technology: A Collection of Reviews from Nature Journals (World Scientific, Singapore, 2010), pp. 320–329Google Scholar
  4. 4.
    H. Wang, J. Lin, Z.X. Shen, J. Sci. 1, 225–255 (2016)Google Scholar
  5. 5.
    T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Nano Lett. 14, 2522–2527 (2014)CrossRefGoogle Scholar
  6. 6.
    C. Zhu, Y. He, Y. Liu, N. Kazantseva, P. Saha, Q. Cheng, J. Energy Chem. 35, 124–131 (2019)CrossRefGoogle Scholar
  7. 7.
    Z. Yang, A. Qiu, J. Ma, M. Chen, Compos. Sci. Technol. 156, 231–237 (2018)CrossRefGoogle Scholar
  8. 8.
    A. Xie, F. Tao, T. Li, L. Wang, S. Chen, S. Luo, C. Yao, Electrochim. Acta 261, 314–322 (2018)CrossRefGoogle Scholar
  9. 9.
    M.S. Rahmanifar, H. Hesari, A. Noori, M.Y. Masoomi, A. Morsali, M.F. Mousavi, Electrochim. Acta 275, 76–86 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Huang, J. Zhou, N. Gao, Z. Yin, H. Zhou, X. Yang, Y. Kuang, Electrochim. Acta 269, 649–656 (2018)CrossRefGoogle Scholar
  11. 11.
    H. Gao, X. Wang, G. Wang, C. Hao, S. Zhou, C. Huang, Nanoscale 10, 10190–10202 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Li, C. Hao, S. Zhou, C. Huang, X. Wang, Electrochim. Acta 283, 467–477 (2018)CrossRefGoogle Scholar
  13. 13.
    M.G. Campbell, M. Dincă, Sensors 17, 1108 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Chowdhury, Metal-organic-frameworks for biomedical applications in drug delivery, and as MRI contrast agents. J. Biomed. Mater. Res., Part A 105, 1184–1194 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Gonen, L. Elbaz, Data Br. 19, 281–287 (2018)CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, H.T.H. Nguyen, S.A. Miller, A.M. Ploskonka, J.B. DeCoste, S.M. Cohen, J. Am. Chem. Soc. 138, 920–925 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, S. Yuan, X. Feng, H. Li, J. Zhou, B. Wang, J. Am. Chem. Soc. 138, 5785–5788 (2016)CrossRefGoogle Scholar
  18. 18.
    L. Shao, Q. Wang, Z. Ma, Z. Ji, X. Wang, D. Song, Y. Liu, N. Wang, J. Power Sources 379, 350–361 (2018)CrossRefGoogle Scholar
  19. 19.
    C.R. Rawool, S.P. Karna, A.K. Srivastava, Electrochim. Acta 294, 345–356 (2019)CrossRefGoogle Scholar
  20. 20.
    Y.Y. Kannangara, U.A. Rathnayake, J.-K. Song, Electrochim. Acta 297, 145–154 (2019)CrossRefGoogle Scholar
  21. 21.
    L. He, J. Liu, L. Yang, Y. Song, M. Wang, D. Peng, Z. Zhang, S. Fang, Electrochim. Acta 275, 133–144 (2018)CrossRefGoogle Scholar
  22. 22.
    S. Zhou, C. Hao, J. Wang, X. Wang, H. Gao, Chem. Eng. J. 351, 74–84 (2018)CrossRefGoogle Scholar
  23. 23.
    S. Zhou, Z. Ye, S. Hu, C. Hao, X. Wang, C. Huang, F. Wu, Nanoscale 10, 15771–15781 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Loera-Serna, M.A. Oliver-Tolentino, M. de Lourdes López-Núñez, A. Santana-Cruz, A. Guzmán-Vargas, R. Cabrera-Sierra, H.I. Beltrán, J. Flores, J. Alloys Compd. 540, 113–120 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Li, J. Miao, X. Sun, J. Xiao, Y. Li, H. Wang, Q. Xia, Z. Li, Chem. Eng. J. 298, 191–197 (2016)CrossRefGoogle Scholar
  26. 26.
    M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Sens. Actuators, B 230, 9–16 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Giri, D. Ghosh, C.K. Das, Adv. Funct. Mater. 24, 1312–1324 (2014)CrossRefGoogle Scholar
  28. 28.
    Y.D.H. Zhang, H. Zhang, W. Wang, Q. Huang, Y. Chen, L. Pu, Int. J. Electrochem. Sci. 11, 6279–6286 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Bouson, A. Krittayavathananon, N. Phattharasupakun, P. Siwayaprahm, M. Sawangphruk, R. Soc. Open Sci. 4, 170654 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Guo, Y. Zhu, Y. Yan, Y. Min, J. Fan, Q. Xu, H. Yun, J. Power Sources 316, 176–182 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Hu, J. Yan, X. Huang, L. Guo, Z. Lin, F. Luo, B. Qiu, K.-Y. Wong, G. Chen, Sens. Actuators, B 267, 312–319 (2018)CrossRefGoogle Scholar
  32. 32.
    J. Wei, Y. Hu, Y. Liang, B. Kong, Z. Zheng, J. Zhang, S.P. Jiang, Y. Zhao, H. Wang, J. Mater. Chem. A 5, 10182–10189 (2017)CrossRefGoogle Scholar
  33. 33.
    X. Liang, F. Zhang, W. Feng, X. Zou, C. Zhao, H. Na, C. Liu, F. Sun, G. Zhu, Chem. Sci. 4, 983–992 (2013)CrossRefGoogle Scholar
  34. 34.
    A.K. Kar, R. Srivastava, New J. Chem. 42, 9557–9567 (2018)CrossRefGoogle Scholar
  35. 35.
    R. Wu, X. Qian, F. Yu, H. Liu, K. Zhou, J. Wei, Y. Huang, J. Mater. Chem. A 1, 11126–11129 (2013)CrossRefGoogle Scholar
  36. 36.
    I.W. Ock, J.W. Choi, H.M. Jeong, J.K. Kang, Adv. Energy Mater. 8, 1702895 (2018)CrossRefGoogle Scholar
  37. 37.
    W. Xu, J. Lu, W. Huo, J. Li, X. Wang, C. Zhang, X. Gu, C. Hu, Nanoscale 10, 14304–14313 (2018)CrossRefGoogle Scholar
  38. 38.
    V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.-J. Kim, Electrochim. Acta 275, 110–118 (2018)CrossRefGoogle Scholar
  39. 39.
    B. Chen, Y. Wang, C. Li, L. Fu, X. Liu, Y. Zhu, L. Zhang, Y. Wu, RSC Adv. 7, 25019–25024 (2017)CrossRefGoogle Scholar
  40. 40.
    Z. Shao, H. Li, M. Li, C. Li, C. Qu, B. Yang, Energy 87, 578–585 (2015)CrossRefGoogle Scholar
  41. 41.
    J.N. Lekitima, K.I. Ozoemena, C.J. Jafta, N. Kobayashi, Y. Song, D. Tong, S. Chen, M. Oyama, J. Mater. Chem. A 1, 2821–2826 (2013)CrossRefGoogle Scholar
  42. 42.
    H. Gao, F. Wu, X. Wang, C. Hao, C. Ge, Int. J. Hydrog. Energy 43, 18349–18362 (2018)CrossRefGoogle Scholar
  43. 43.
    S. Selvam, B. Balamuralitharan, S.N. Karthick, A.D. Savariraj, K.V. Hemalatha, S.-K. Kim, H.-J. Kim, J. Mater. Chem. A 3, 10225–10232 (2015)CrossRefGoogle Scholar
  44. 44.
    L. Mao, H.S.O. Chan, J. Wu, RSC Adv. 2, 10610–10617 (2012)CrossRefGoogle Scholar
  45. 45.
    M.G. Hosseini, E. Shahryari, R. Najjar, I. Ahadzadeh, Int. J. Nanosci. Nanotechnol. 11, 147–157 (2015)Google Scholar
  46. 46.
    Z. Hu, L. Zu, Y. Jiang, H. Lian, Y. Liu, Z. Li, F. Chen, X. Wang, X. Cui, Polymers 7, 1491 (2015)CrossRefGoogle Scholar
  47. 47.
    N.M. Das, D. Roy, N. Clarke, V. Ganesan, P.S. Gupta, RSC Adv. 4, 32490–32503 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Ramadan, A.M. Abdellah, S.G. Mohamed, N.K. Allam, Sci. Rep. 8, 7988 (2018)CrossRefGoogle Scholar
  49. 49.
    N. Song, Y. Wu, W. Wang, D. Xiao, H. Tan, Y. Zhao, Mater. Res. Bull. 111, 267–276 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zeinab Neisi
    • 1
  • Zeinab Ansari-Asl
    • 1
    Email author
  • Amin Shiralizadeh Dezfuli
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceShahid Chamran University of AhvazAhvazIran
  2. 2.Medical Physics Department, School of MedicineIran University of Medical Sciences (IUMS)TehranIran

Personalised recommendations