Advertisement

Photodegradation of Antibiotic by Un-doped and Cu2+ Doped ZnS Quantum Dots/MWCNTs: Structural, Optical, Photoluminescence Studies

  • Mohammad Reza Khamis Abadi
  • Alireza FeizbakhshEmail author
  • Homayon Ahmad Panahi
  • Elaheh Konoz
Article
  • 30 Downloads

Abstract

In this project, Cu2+ doped on ZnS quantum dots (QDs)/MWCNTs nanocomposites and undoped samples were provided by chemical method and several techniques by photoluminescence (PL) spectroscopy, X-ray diffraction powder (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy with field emission (FESEM), Energy dispersive X-ray (EDS), Dynamic light scattering (DLS), thermogravimetric analysis (TGA) and UV–vis spectra used to characterization of materials. The band-gap of the ZnS QDs, ZnS QDs/MWCNTs, Cu-ZnS QDs/MWCNTs (2:1), Cu-ZnS QDs/MWCNTs (1:1) and Cu-ZnS QDs/MWCNTs (2:1) were 3.20, 3.05, 2.90, 2.85, and 2.80 eV, respectively. The photocatalytic activity of ZnS QDs/MWCNTs nanocomposites and Cu2+ doped ZnS QDs/MWCNTs nanocomposites were tested with Erythromycin drug compound, which is a member of the macrolide antibiotic family. The morphological and structural studies revealed that the nano products were decorated on MWCNTs. The photocatalytic results revealed that the Cu2+ doping raised the photocatalytic performances of ZnS QDs/MWCNTs nanocomposites and could be used as nano photocatalyst for decomposition of environmental pollutant compound. The optimum condition for the photocatalysis process was found pH: 6.5, catalyst dosage: 0.01 g and time: 90 min.

Keywords

Cu2+ doped ZnS QDs: Photoluminescence Photocatalytic degradation 

Notes

Acknowledgements

The authors thank the Islamic Azad University Central Tehran branch for providing the facility to carry out our research.

References

  1. 1.
    X. Lu, L. Li, W. Zhang, C. Wang, Nanotechnology 16, 2233–2237 (2005)CrossRefGoogle Scholar
  2. 2.
    Z.-D. Meng, T. Ghosh, L. Zhu, J.-G. Choi, C.-Y. Park, W.-C. Oh, J. Mater. Chem. 22, 16127–16135 (2012)CrossRefGoogle Scholar
  3. 3.
    D. Wang, C. Hao, W. Zheng, Q. Peng, T. Wang, Z. Liao, D. Yu, Y. Li, Adv. Mater. 20, 2628 (2008)CrossRefGoogle Scholar
  4. 4.
    H. Wang, L. Qi, Adv. Funct. Mater. 18, 1249–1256 (2008)CrossRefGoogle Scholar
  5. 5.
    A. Pourahmad, Superlattices Microstruct. 52, 276–287 (2012)CrossRefGoogle Scholar
  6. 6.
    S.P. Anthony, Mater. Lett. 63, 773–776 (2009)CrossRefGoogle Scholar
  7. 7.
    K. Kaviyarasu, K. Kanimozhi, N. Matinise, C. Maria Magdalane, M. Maaza, Mater. Sci. Eng. C 76, 1012–1025 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Mobeen Amanulla, S.K. Jasmine Shahina, R. Sundaram, C. Maria Magdalane, M. Maaza, J. Photochem. Photobiol. B 183, 233–241 (2018)CrossRefGoogle Scholar
  9. 9.
    C. Maria Magdalane, K. Kaviyarasu, N. Matinise, N. Mayedwa, B. Jeyaraj, South Afr. J. Chem. Eng. 26, 49–60 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Subba Reddy, C. Maria Magdalane, K. Kaviyarasu, G.T. Mola, M. Maaza, J. Phys. Chem. Solids 123, 43–51 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Mittal, M. Sharma, O.P. Pandey, Sol. Energy 110, 386–397 (2014)CrossRefGoogle Scholar
  12. 12.
    R. Chauhan, A.R. Kumar, R.P. Chaudhary, J. Lumin. 145, 6–12 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Thirumala Rao, B. Babu, R. Joyce Stella, V. Pushpa Manjari, R.V.S.S.N. Ravikumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 139, 86–93 (2015)CrossRefGoogle Scholar
  14. 14.
    S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98, 013505 (2005)CrossRefGoogle Scholar
  15. 15.
    M. Hosseini, M.R.R. Kahkha, A. Fakhri, S. Tahami, M.J. Lariche, J. Photochem. Photobiol. B 185, 24–31 (2018)CrossRefGoogle Scholar
  16. 16.
    V.K. Gupta, A. Fakhri, M. Azad, S. Agarwal, J. Colloid Interface Sci. 510, 95–102 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Lin, S. Wu, C. Yang, M. Chen, X. Li, Appl. Catal. B 245, 71–86 (2019)CrossRefGoogle Scholar
  18. 18.
    T.L. Tan, C.W. Lai, S.L. Hong, S.A. Rashid. J. Photochem. Photobiol., A 364, 177–189 (2018)CrossRefGoogle Scholar
  19. 19.
    D.A. Reddy, C. Liu, R.P. Vijayalakshmi, B.K. Reddy, J. Alloy. Compd. 582, 257–264 (2014)CrossRefGoogle Scholar
  20. 20.
    V. Ramasamy, K. Praba, G. Murugadoss, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 96, 963–971 (2012)CrossRefGoogle Scholar
  21. 21.
    Z. Chen, X. Xia, G. Duc, Q. Yu, Opt. Mater. 36, 1007–1012 (2014)CrossRefGoogle Scholar
  22. 22.
    R. Rajalakshmi, S. Angappane, Mater. Sci. Eng. B 178, 1068–1075 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Gros, C. Cruz-Morato, E. Marco-Urrea, P. Longrée, H. Singer, M. Sarrà, J. Hollender, T. Vicent, S. Rodriguez-Mozaz, D. Barceló, Water Res. 60, 228–241 (2014)CrossRefGoogle Scholar
  24. 24.
    W.A. Zordok, W.H. El-Shwiniy, M.S. El-Attar, S.A. Sadeek, J. Mol. Struct. 1047, 267–276 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Kennedy, P.P. Murmu, G.V.M. Leveneur, J. Williams, R.L. Moody, T. Maity, S.V. Chong, J. Nanosci. Nanotechnol. 18, 1384–1387 (2018)CrossRefGoogle Scholar
  26. 26.
    J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, J. Alloy. Compd. 616, 614–617 (2014)CrossRefGoogle Scholar
  27. 27.
    P.P. Murmu, J. Kennedy, S. Suman, S.V. Chong, G. Ramanath, Mater. Design 163, 107549 (2019)CrossRefGoogle Scholar
  28. 28.
    K. Kaviyarasu, T. Genene, S.O. Mola, K. Oseni, C. Kanimozhi, J. Maria Magdalane, M. Kennedy, Maaza, J. Mater. Sci.: Mater. Electron. 30, 147–158 (2019)Google Scholar
  29. 29.
    J.-M. Zhu, M. Hosseini, A. Fakhri, S. Salari Rad, N. Nobakht, J. Photochem. Photobiol., B 191, 75–82 (2019)CrossRefGoogle Scholar
  30. 30.
    A. Fakhri, V.K. Gupta, H. Rabizadeh, S. Agarwal, S. Tahami, Int. J. Biol. Macromol. 120, 1789–1793 (2018)CrossRefGoogle Scholar
  31. 31.
    F.A. Saad, M.M. Abou-Sekkina, A.M. Khedr, F.G. El-Metwaly, Int. J. Electrochem. Sci. 9, 3904–3916 (2014)Google Scholar
  32. 32.
    I. Evroula Hapeshi, D. Fotiou, Fatta-Kassinos, Chem. Eng. J. 224, 96–105 (2013)CrossRefGoogle Scholar
  33. 33.
    I. Michael, E. Hapeshi, J. Aceña, S. Perez, M. Petrović, A. Zapata, D. Barceló, S. Malato, D. Fatta-Kassinos, Sci. Total Environ. 39, 461–462 (2013)Google Scholar
  34. 34.
    C.S. Pathak, M.K. Mandal, Chalcogenide Lett. 8, 147–153 (2011)Google Scholar
  35. 35.
    S. Long Dong, S. Guo, D. Zhu, L. Xu, M. Zhang, X. Huo, Yang, Catal. Commun. 16, 250–254 (2011)CrossRefGoogle Scholar
  36. 36.
    N.T. Nolan, M.K. Serry, S.J. Hinder, L.F. Healy, S.C. Pillai, J. Phys. Chem.C 114, 13026 (2010)CrossRefGoogle Scholar
  37. 37.
    Sh. Sohrabnezhad, M.J. Mehdipour Moghaddam, T. Salavatiyan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 125, 73–78 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Reza Khamis Abadi
    • 1
  • Alireza Feizbakhsh
    • 1
    Email author
  • Homayon Ahmad Panahi
    • 1
  • Elaheh Konoz
    • 1
  1. 1.Department of Chemistry, Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations