Advertisement

Phosphotungstic Acid Supported on MgAl2O4 Nanoparticles as an Efficient and Reusable Nanocatalyst for Benzylic Alcohols Oxidation with Hydrogen Peroxide

  • Reza Hajavazzade
  • M. KargarraziEmail author
  • Ali Reza Mahjoub
Article
  • 9 Downloads

Abstract

In this study, a novel nanocatalyst (MgAl2O4@SiO2–PTA) was recommended for the oxidation of benzylic alcohols. The resulting nanoparticles were characterized by spectroscopic and microscopic methods, such as X-ray diffraction, SEM, FT-IR, EDX, ICP-AES, and Brunauer–Emmett–Teller surface area analysis. In this paper, magnesium aluminate spinel (MgAl2O4), used as the supporting catalyst, provides the recycling and reusing the catalyst and also increases the efficiency of the reaction. The nanocomposite was investigated as a catalyst for the selective oxidation of alcohols to the corresponding carbonyl compounds with hydrogen peroxide as oxidant and water as a solvent. Primary alcohols were converted to aldehydes but secondary alcohols were converted to ketones. Benzylic alcohols have better oxidative reactions than aliphatic alcohols. Among the oxidation reactions of the benzylic alcohols investigated in this project, the oxidation reaction of 1-phenylethanol to acetophenone was more efficient than other reactions (98%). This nanocatalyst is environmentally friendly because it could be recovered by simple filtration. The catalyst was used five times successfully without any changes or loss of its high catalytic activity.

Keywords

Nano-catalyst Oxidation Benzylic alcohols Hydrogen peroxide Nanoparticles Catalyst 

Notes

Acknowledgements

Financial support of this paper by Tehran North Branch, Islamic Azad University, and Tarbiat Modares University, is thankfully acknowledged. Reza Hajavazzade Ph.D. student who did all the experience. Maryam Kargar Razi; Supervisor of the project. Alireza Mahjoub; Advisor of the project.

Supplementary material

10904_2019_1116_MOESM1_ESM.pdf (260 kb)
Supplementary material 1 (PDF 259 KB)

References

  1. 1.
    M. Dusi, T. Mallat, A. Baiker, Catal. Rev. 42, 213–278 (2000)CrossRefGoogle Scholar
  2. 2.
    M. Farsani, B. Yadollahi, J. Mol. Catal. A Chem. 392, 8–15 (2014)CrossRefGoogle Scholar
  3. 3.
    C.H. Miao, X.X. Li, Y.M. Lee, C. Xia, Y. Wang, W. Nam, W. Sun, Chem. Sci. 8, 7476–7482 (2017)CrossRefGoogle Scholar
  4. 4.
    J.S. Carey, D. Laffan, C. Thomson, M.T. Williams, Org. Biomol. Chem. 4, 2337–2347 (2006)CrossRefGoogle Scholar
  5. 5.
    R.W. Dugger, J.A. Ragan, D.H.B. Ripin, Org. Process. Res. Dev. 9.3, 253–258 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Heydari, S. Khaksar, M. Sheykhan, M. Tajbakhsh, J. Mol. Catal. A Chem. 287, 5–8 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Zhang, G. Zhao, S. Gao, Z. Xi, J. Xu, J. Mol. Catal. A Chem. 289, 22–27 (2008)CrossRefGoogle Scholar
  8. 8.
    W. Zhao, Y. Zhang, B. Ma, Y. Ding, W. Qiu, Catal. Commun. 11, 527–531 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Firouzabadi, A. Jafari, J. Iran. Chem. Soc. 2, 85–114 (2005)CrossRefGoogle Scholar
  10. 10.
    L. Yang, L.W. Xu, C.G. Xia, Tetra. Lett. 49, 2882–2885 (2008)CrossRefGoogle Scholar
  11. 11.
    Q. Ge, Y. Huang, F. Qiu, S. Li, Appl. Catal. A 167, 1, 23–30 (1998)CrossRefGoogle Scholar
  12. 12.
    T.J. Yoon, K.N. Yu, E. Kim, J.S. Kim, B.G. Kim, S.H. Yun, B.H. Sohn, M.H. Cho, J.K. Lee, S.B. Park, Small. 2.2, 209–215 (2006)CrossRefGoogle Scholar
  13. 13.
    F. Bigi, A. Corradini, C. Quarantelli, G. Sartori, J. Catal. 250, 222–230 (2007)CrossRefGoogle Scholar
  14. 14.
    F. Shahbazi, K. Amani, Catal. Commun. 55, 57–64 (2014)CrossRefGoogle Scholar
  15. 15.
    B. Ismail, S.T. Hussain, S. Akram, Chem. Eng. J. 219, 395–402 (2013)CrossRefGoogle Scholar
  16. 16.
    L.R. Ping, A. Azad, T.W. Dunga, Mater. Res. Bull. 36, 1417–1430 (2001)CrossRefGoogle Scholar
  17. 17.
    L.B. Kong. J. Ma, H. Huang, Mater. Lett. 56, 238–243 (2002)CrossRefGoogle Scholar
  18. 18.
    M.M. Rashad, Z.I. Zaki, H. El-Shall, J. Mater. Sci. 44, 2992–2998 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Sanjabi, A. Obeydavi, J. Alloy. Compd. 645, 535–540 (2015)CrossRefGoogle Scholar
  20. 20.
    N. Habibi, Y. Wang, H. Arandiyan, M. Rezaei, Adv. Powder. Technol. 28, 1249–1257 (2017)CrossRefGoogle Scholar
  21. 21.
    H.B. Bafrooein, T. Ebadzadeh, Cera. Int. 39, 8933–8940 (2013)CrossRefGoogle Scholar
  22. 22.
    F. Zamani, E. Izadi, J. Inorg. Organomet. Polym. 23, 1501–1510 (2013)CrossRefGoogle Scholar
  23. 23.
    M.H. Ardakani, S. Saeednia, P. Iranmanesh, B. Konani, J. Inorg. Organomet. Polym. 27, 146–155 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Kimi, M. Muazmil, H. Jaidie, S. Pang, J. Phys. Chem. Solid. 112, 50–53 (2018)CrossRefGoogle Scholar
  25. 25.
    H. Kargar, Transit. Met. Chem. 39, 811–817 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Ramazani, M. Khoobi, F. Sadri, R. Tarasi, A. Shafiee, H. Aghahosseini, S.W. Joo, Appl Organomet. Chem. 32, 3908 (2018)CrossRefGoogle Scholar
  27. 27.
    R. Wang, B. Li, Y. Xiao, X. Tao, X. Su, X. Dong, J. Catal. 364, 154–165 (2018)CrossRefGoogle Scholar
  28. 28.
    Z. Hao, X. Yan, Z. Li, R. Wu, Z. Ma, S. Li, Z. Han, X. Zheng, J. Lin, Trans.Metal Chem 43, 635–640 (2018)CrossRefGoogle Scholar
  29. 29.
    M.Y. Nassar, I.S. Ahmed, I. Samir, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 329–334 (2014)CrossRefGoogle Scholar
  30. 30.
    Y.H. Deng, C.C. Wang, J.H. Hu, W.L. Yang, S.K. Fu, Colloids Surf. A: Physicochem. Eng. Aspects 262, 87–93 (2005)CrossRefGoogle Scholar
  31. 31.
    S.M. Olhero, I. Ganesh, P. Torres, J. Ferreira, Langmuir. 24, 9525–9530 (2008)CrossRefGoogle Scholar
  32. 32.
    J. Puriwat, W. Chaitree, K. Suriye, S. Dokjampa, P. Praserthdam, J. Panpranot, Catal. Commun. 12, 80–85 (2010)CrossRefGoogle Scholar
  33. 33.
    M.Y. Nassar, I.S. Ahmed, Polyhedron. 30, 2431–2437 (2011)CrossRefGoogle Scholar
  34. 34.
    M.Y. Nassar, I.S. Ahmed, Mater. Res. Bull. 47, 2638–2645 (2012)CrossRefGoogle Scholar
  35. 35.
    M.Y. Nassar, A. Attia, K. Alfallous, M. El-Shahat, Inorg. Chem. Act. 405, 362–367 (2013)CrossRefGoogle Scholar
  36. 36.
    M.Y. Nassar, Mater. Lett. 94, 112–115 (2013)CrossRefGoogle Scholar
  37. 37.
    T. Rakjumar, G. Rao, J. Chem. Sci. 120, 587–594 (2008)CrossRefGoogle Scholar
  38. 38.
    R. Khoshnavazi, L. Bahrami, F. Havasi, E. Naseri, RSC. Adv. 7, 11510–11521 (2017)CrossRefGoogle Scholar
  39. 39.
    N. Rahmat, Z. Yaakob, M. Pudukudy, N.A. Rahman, S.S. Jahaya, Powder Technol. 329, 409–419 (2018)CrossRefGoogle Scholar
  40. 40.
    M.T. Hafshejani, S. Saeednia, M.H. Ardakani, Z.P. Parizi, Trans. Metal. Chem. 43, 579–589 (2018)CrossRefGoogle Scholar
  41. 41.
    M.R. Farsani, B. Yadollahi, J. Mol. Catal. A: Chem. 392, 8–15 (2014)CrossRefGoogle Scholar
  42. 42.
    A. Bordoloi, S. Sahoo, F. Lefebvre, S.B. Halligudi, J. Catal. 259, 232–239 (2008)CrossRefGoogle Scholar
  43. 43.
    S.P. Mardur, G.S. Gokavi, J. Iran. Chem. Soc. 7, 441–446 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Tehran North BranchIslamic Azad universityTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceTarbiat Modares UniversityTehranIran

Personalised recommendations