Advertisement

Synthesis of CuO Nanocrystals Supported on Multiwall Carbon Nanotubes for Nanothermite Applications

  • Sherif ElbasuneyEmail author
  • M. Gaber Zaky
  • Mostafa Radwan
  • Rakesh P. Sahu
  • Ishwar K. Puri
Article
  • 119 Downloads

Abstract

Multiwall carbon nanotubes (MWNTs) can ofer high surface area (> 700 m2/g). MWNTs functionalized with energetic groups can find wide applications in advanced energetic systems. We coat MWNTs with copper through electroless plating and subsequently anneal the hybrid Cu-MWNT material at 250 °C to develop CuO-MWNT. TEM micrographs showed that MWNTs of 20–30 nm and 5–10 nm outer and inner diameters and 0.5–2.0 µm length were homogeneously decorated with CuO nanoparticles; XRD diffractograms revealed highly crystalline structure. Since CuO particles can act as effective oxidizer for aluminium in nanothermite applications. CuO-MWNTs were effectively dispersed with aluminium nanoparticles (100 nm) in isopropyl alcohol; subsequently colloidal nanothermite particles were dispersed into molten tri-nitro toluene (TNT). Upon initiation, the nanothermite colloid offered not only an increase in the shock wave strength of TNT by 29% using ballistic mortar test; but also an increae in brisance (destructive effect) by 15.6%. Futhermore the developed hybrid nanothermite offered an increase in the total heat release by 108% using DSC.

Keywords

Electroless plating Nanoparticles Nanocomposites Multiwalled carbon nanotubes Thermites Energetic materials 

Notes

References

  1. 1.
    X. Chen et al., “Carbon-nanotube metal-matrix composites prepared by electroless plating”. Compos. Sci. Technol. 60, 301–306 (2000)CrossRefGoogle Scholar
  2. 2.
    A. Peigney et al., “Specific surface area of carbon nanotubes and bundles of carbon nanotubes,” Carbon, 39, 507–514, 2001CrossRefGoogle Scholar
  3. 3.
    Q.-L. Yan et al., “Highly energetic compositions based on functionalized carbon nanomaterials” Nanoscale, 8, 4799–4851, (2016)CrossRefGoogle Scholar
  4. 4.
    M. Keidar et al., “Current-driven ignition of single-wall carbon nanotubes” Carbon, 44, 1022–1024, (2006)CrossRefGoogle Scholar
  5. 5.
    X. LIU et al., “Synthesis of CuO/CNTs composites and its catalysis on thermal decomposition of FOX-12 [J]”. J. Sol. Rocket Technol. 5, 019 (2008)Google Scholar
  6. 6.
    A.A. Sahraei et al., “Formation of homogenous copper film on MWCNTs by an efficient electroless deposition process”. Sci. Eng. Compos. Mater. 24, 345–352 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Arai, M. Endo, “Carbon nanofiber–copper composite powder prepared by electrodeposition. Electrochem. Commun 5, 797–799 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Arai et al., “Ni-deposited multi-walled carbon nanotubes by electrodeposition” Carbon, 42, 641–644, (2004)CrossRefGoogle Scholar
  9. 9.
    K. Yamagishi et al., “Adsorbates formed on non-conducting substrates by two-step catalyzation pretreatment for electroless plating”. Hyomen Gijutsu (J. Surf. Finish. Soc. Jpn.) 54, 150–154 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Van Gestel et al., “Manufacturing of new nano-structured ceramic–metallic composite microporous membranes consisting of ZrO 2, Al 2 O 3, TiO 2 and stainless steel”. Sol. State Ion. 179, 1360–1366 (2008)CrossRefGoogle Scholar
  11. 11.
    A.M. Abdalla et al., “Fabrication of nanoscale to macroscale nickel-multiwall carbon nanotube hybrid materials with tunable material properties”. Mater. Res. Express 3, 125014 (2016)CrossRefGoogle Scholar
  12. 12.
    Q. Li et al., “Coating of carbon nanotube with nickel by electroless plating method”. Jpn. J. Appl. Phys. Part 2 Lett. 36, 501–503 (1997)CrossRefGoogle Scholar
  13. 13.
    V.P. Menon, C.R. Martin, Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 67, 1920–1928 (1995)CrossRefGoogle Scholar
  14. 14.
    P. Sahoo, S.K. Das, Tribology of electroless nickel coatings—a review. Mater. Design 32, 1760–1775 (2011)CrossRefGoogle Scholar
  15. 15.
    K. Chin et al., “Gold and silver coated carbon nanotubes: an improved broad-band optical limiter”. Chem. Phys. Lett. 409, 85–88 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Elbasuney et al., “Stabilized super-thermite colloids: a new generation of advanced highly energetic materials”. Appl. Surf. Sci. 419, 328–336 (2017)CrossRefGoogle Scholar
  17. 17.
    J.A. Conkling, C. Mocella, Chemistry of pyrotechnics: basic principles and theory: CRC press, Boca Raton, (2010)Google Scholar
  18. 18.
    S. Fischer, M. Grubelich, “A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications,” In 32nd Joint Propulsion Conference and Exhibit, ed: American Institute of Aeronautics and Astronautics (1996)Google Scholar
  19. 19.
    V.E. ZARKO, A.A. GROMOV (eds.), Energetic nanomaterials synthesis, characterization, and application (Elsevier, Amsterdam, 2016)Google Scholar
  20. 20.
    N.H. Yen, L.Y. Wang, “Reactive metals in explosives”. Propellants Explos. Pyrotech. 37, 143–155 (2012)CrossRefGoogle Scholar
  21. 21.
    D.G. Piercey, T.M. Klapoetke, Nanoscale aluminum-metal oxide (thermite) reactions for application in energetic materials. Cent. Eur. J. Energ Mater 7, 115–129 (2010)Google Scholar
  22. 22.
    R.J. Jacob et al., “Energy release pathways in nanothermites follow through the condensed state”. Combust. Flame 162, 258–264 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Jian et al., “Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition?”. Combust. Flame 160, 432–437 (2013)CrossRefGoogle Scholar
  24. 24.
    D.J. Shin et al., “Nanothermite of Al nanoparticles and three-dimensionally ordered macroporous CuO: Mechanistic insight into oxidation during thermite reaction”. Combust. Flame 189, 87–91 (2018)CrossRefGoogle Scholar
  25. 25.
    M. Comet et al., “Nanothermite foams: From nanopowder to object”. Chem. Eng. J. 316, 807–812 (2017)CrossRefGoogle Scholar
  26. 26.
    M.B. Talawar et al., “Emerging trends in advanced high energy materials” Combust. Explos. Shock Waves. 43, 62–72 (2007)CrossRefGoogle Scholar
  27. 27.
    J. Conkling, C. MOCELLA (eds.), Chemistry of pyrotechnics basic principles and theory (CRC, London, 2012)Google Scholar
  28. 28.
    A.S. Mukasyan et al., “Combustion synthesis in nanostructured reactive systems”. Adv. Powder Technol. 26, 954–976 (2015)CrossRefGoogle Scholar
  29. 29.
    P. Brousseau, C.J. Anderson, Nanometric aluminum in explosives. Propellants Explos. Pyrotech. 27, 300–306 (2002)CrossRefGoogle Scholar
  30. 30.
    C. Rossi, “Two decades of research on nano-energetic materials”. Propellants Explos. Pyrotech. 39, 323–327 (2014)CrossRefGoogle Scholar
  31. 31.
    K. Monogarov et al., “Сombustion of micro- and nanothermites under elevating pressure”. Phys. Procedia 72, 362–365 (2015)CrossRefGoogle Scholar
  32. 32.
    B.W. Asay et al., Ignition characteristics of metastable intermolecular composites. Propellants Explos. Pyrotech. 29, 216–219 (2004)CrossRefGoogle Scholar
  33. 33.
    J. Wang et al., “Thermal stability and reaction properties of passivated Al/CuO nano-thermite”. J. Phys. Chem. Solids 72, 620–625 (2011)CrossRefGoogle Scholar
  34. 34.
    H. Wang et al., “Assembly and reactive properties of Al/CuO based nanothermite microparticles”. Combust. Flame 161, 2203–2208 (2014)CrossRefGoogle Scholar
  35. 35.
    A.K. Mohamed et al., “Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation”. J. Hazard. Mater. 301, 492–503 (2016)CrossRefGoogle Scholar
  36. 36.
    S. Elbasuney et al., “Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture” Fuel, 208, 296–304 (2017)Google Scholar
  37. 37.
    C. Aumann et al., “Oxidation behavior of aluminum nanopowders”. J. Vac. Sci. Technol. B 13, 1178–1183 (1995)CrossRefGoogle Scholar
  38. 38.
    I. Monk et al., “Combustion characteristics of stoichiometric Al–CuO nanocomposite thermites prepared by different methods”. Combust. Sci. Technol. 189, 555–574 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Arai et al., Nickel-coated carbon nanofibers prepared by electroless deposition. Electrochem. Commun. 6, 1029–1031 (2004)CrossRefGoogle Scholar
  40. 40.
    S.-M. Bak et al., “Mesoporous nickel/carbon nanotube hybrid material prepared by electroless deposition”. J. Mater. Chem. 21, 1984–1990 (2011)CrossRefGoogle Scholar
  41. 41.
    M. Jagannatham et al., “Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites”. Appl. Surf. Sci. 324, 475–481 (2015)CrossRefGoogle Scholar
  42. 42.
    L.-M. Ang et al., “Electroless plating of metals onto carbon nanotubes activated by a single-step activation method”. Chem. Mater. 11, 2115–2118 (1999)CrossRefGoogle Scholar
  43. 43.
    F. Wang et al., “The preparation of multi-walled carbon nanotubes with a Ni–P coating by an electroless deposition process” Carbon, 43, 1716–1721, (2005)CrossRefGoogle Scholar
  44. 44.
    S. Elbasuney, “Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)CrossRefGoogle Scholar
  46. 46.
    P.P. Vadhe et al., “Cast aluminized explosives (review)” Combust Explos Shock Waves. 44, 461–477, (2008)CrossRefGoogle Scholar
  47. 47.
    S. Elbasuney, “Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems” J. Inorg. Organomet. Polym. Mater, 28, 1793–1800, (2018)CrossRefGoogle Scholar
  48. 48.
    M. Suceska (ed.), Test methods for explosives (Springer, New York, 1995)Google Scholar
  49. 49.
    PHYWE, “PHYWE brisance apparatus “, ed. Germany, 1994Google Scholar
  50. 50.
    T. Tillotson et al., “Sol–gel processing of energetic materials”. J. Non Cryst. Sol. 225, 358–363 (1998)CrossRefGoogle Scholar
  51. 51.
    M.A. Elsayed et al., “Instant synthesis of bespoke nanoscopic photocatalysts with enhanced surface area and photocatalytic activity for wastewater treatment”. J. Photochem. Photobiol. A 344, 121–133 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sherif Elbasuney
    • 1
    Email author
  • M. Gaber Zaky
    • 1
  • Mostafa Radwan
    • 2
  • Rakesh P. Sahu
    • 3
  • Ishwar K. Puri
    • 3
  1. 1.Head of nanotechnology research centerMilitary Technical CollegeCairoEgypt
  2. 2.British University in EgyptElshorouk CityEgypt
  3. 3.Department of Engineering Physics, Department of Mechanical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations