Advertisement

Application of metallofullerene towards adsorption of mustard gas: a detailed DFT study

  • Yunes Panahi
  • Mohammad Mehdi SadeghiEmail author
Article
  • 39 Downloads

Abstract

Towards investigation on the application of metallofullerene in the removal of mustard gas, a fullerene C20 has been considered for substitutional doping by three of transition metals (Ti, Fe, and Ni). The resulted metallofullerenes (C19Ti, C19Fe, and C19Ni) were considered for the interaction of mustard gas in its surface by using DFT calculations in B3LYP-D3/631G (d,p) level of theory. We used NBO and frontier molecular orbital (FMO) techniques to track the change in the electronic structure of metallofullerenes upon mustard gas adsorption. During adsorption of mustard gas, the direction of charge transfer is from mustard to clusters which points towards p-type conduction property of metallofullerenes. Our results reveal that the metallofullerene may be an ideal candidate for the adsorption of mustard gas with adsorption energies in the range of − 96 to − 102 kJ/mol.

Keywords

Mustard gas Metallofullerene Density functional theory 0-D materials Adsorption 

Notes

References

  1. 1.
    A. Ramraj, I.H. Hillier, M.A. Vincent, N.A. Burton, Assessment of approximate quantum chemical methods for calculating the interaction energy of nucleic acid bases with graphene and carbon nanotubes. Chem. Phys. Lett. 484, 295–298 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Shokuhi Rad, O.R. Kashani, Adsorption of acetyl halide molecules on the surface of pristine and Al-doped graphene: ab initio study. Appl. Surf. Sci 355, 233–241 (2015)CrossRefGoogle Scholar
  3. 3.
    A.S. Rad, Al-doped graphene as sensitive nanostructure sensor for some ether molecules: ab-initio study of adsorption. Synthetic Met. 209, 419–425 (2015)CrossRefGoogle Scholar
  4. 4.
    A.S. Rad, First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Appl. Surf. Sci. 357, 1217–1224 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Song, M. Xia, X. Zhao, F. Liu, Li, B. Huang, Ab initio study of base-functionalized single walled carbon nanotubes. Chem. Phys. Lett. 415, 183–187 (2005)CrossRefGoogle Scholar
  6. 6.
    M. Sherafati, A.S. Rad, M. Ardjmand, A. Heydarinasab, M. Peyravi, M. Mirzaei, Beryllium oxide (BeO) nanotube provides excellent surface towards adenine adsorption: a dispersion-corrected DFT study in gas and water phases. Curr. Appl. Phys. 18, 1059–1065 (2018)CrossRefGoogle Scholar
  7. 7.
    M.S.H. Namin, P. Pargolghasemi, S. Alimohammadi, A.S. Rad, L. Taqavi, Quantum chemical study on the adsorption of metformin drug on the surface of pristine, Si- and Al-doped (5, 5) SWCNTs. Physica E 90, 204–213 (2017)CrossRefGoogle Scholar
  8. 8.
    A.S. Rad, K. Ayub, O3 and SO2 sensing concept on extended surface of B12N12 nanocages modified by Nickel decoration: A comprehensive DFT study. Solid State Sci. 69, 22–30 (2017)CrossRefGoogle Scholar
  9. 9.
    A.S. Rad, High ozone chemisorption by using metal–cluster complexes: a DFT study on the nickel-decorated B12P12 nanoclusters. Can. J. Chem. 95, 845–850 (2017)CrossRefGoogle Scholar
  10. 10.
    A.S. Rad, Comparison of X12Y12 (X = Al, B and Y = N, P) fullerene-like nanoclusters towards adsorption of dimethyl ether. J. Theor. Comput. Chem. 17, 1850013 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Salimifard, A.S. Rad, K. Mahanpoor, Surface interaction of H2S, SO2, and SO3 on fullerene-like gallium nitride (GaN) nanostructure semiconductor. Solid State Commun. 265, 6–11 (2017)CrossRefGoogle Scholar
  12. 12.
    A.S. Rad, S.M. Aghaei, H. Pazoki, E. Binaeian, M. Mirzaei, Surface interaction of H2O and H2S onto Ca12O12 nanocluster: Quantum-chemical analyses. Surf. Interface Anal. 50, 411–419 (2018)CrossRefGoogle Scholar
  13. 13.
    A.S. Rad, K. Ayub, Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study. Vacuum 131, 135–141 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Shokuhi Rad, D. Zareyee, V. Pouralijan Foukolaei, B. Kamyab Moghadas, M. Peyravi, Study on the electronic structure of Al12N12 and Al12P12 fullerene-like nano-clusters upon adsorption of CH3F and CH3Cl. Mol. Phys. 114, 3143–3149 (2016)CrossRefGoogle Scholar
  15. 15.
    A.S. Rad, Study on the surface interaction of Furan with X12Y12 (X = B, Al, and Y = N, P) semiconductors: DFT calculations. Heteroat. Chem. 27, 316–322 (2016)CrossRefGoogle Scholar
  16. 16.
    A.S. Rad, K. Ayub, Coordination of nickel atoms with Al12X12 (X = N, P) nanocages enhances H2 adsorption: a surface study by DFT. Vacuum 133, 70–80 (2016)CrossRefGoogle Scholar
  17. 17.
    A.S. Rad, S.M. Aghaei, V. Poralijan, M. Peyravi, M. Mirzaei, Application of pristine and Ni-decorated B12P12 nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Comput. Theor. Chem. 1109, 1–9 (2017)CrossRefGoogle Scholar
  18. 18.
    A.S. Rad, K. Ayub, Adsorption of thiophene on the surfaces of X12Y12 (X = Al, B, and Y = N, P) nanoclusters; A DFT study. J. Mol. Liq. 238, 303–309 (2017)CrossRefGoogle Scholar
  19. 19.
    A.S. Rad, K. Ayub, Adsorption properties of acetylene and ethylene molecules onto pristine and nickel-decorated Al12N12 nanoclusters. Mater. Chem. Phys. 194, 337–344 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, B.V. Issendorff, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407, 60–63 (2000)CrossRefGoogle Scholar
  21. 21.
    Z. Wang, X. Ke, Z. Zhu, F. Zhu, M. Ruan, H. Chen, R. Huang, L. Zheng, A new carbon solid made of the world’s smallest caged fullerene C20. Phys. Lett. A 280, 351–356 (2001)CrossRefGoogle Scholar
  22. 22.
    Z. Iqbal, Y. Zhang, H. Grebel, S. Vijayalakshmi, A. Lahamer, G. Benedek, M. Bernasconi, J. Cariboni, I. Spagnolatti, R. Sharma, Evidence for a solid phase of dodecahedral C20. Eur. Phys. J. B 31, 509–515 (2003)CrossRefGoogle Scholar
  23. 23.
    Y.-P. An, C.-L. Yang, M.-S. Wang, X.-G. Ma, D.-H. Wang, Geometrical and electronic properties of the clusters of C20 Cage doped with alkali metal atoms. J. Clust. Sci. 22, 31–39 (2011)CrossRefGoogle Scholar
  24. 24.
    M.T. Baei, A. Soltani, P. Torabi, F. Hosseini, Formation and electronic structure of C20 fullerene transition metal clusters. Monatsh. Chem. 145, 1401–1405 (2014)CrossRefGoogle Scholar
  25. 25.
    A.S. Rad, K. Ayub, Nonlinear optical and electronic properties of Cr-, Ni-, and Ti- substituted C20 fullerenes: a quantum-chemical study. Mater. Res. Bull. 97, 399–404 (2018)CrossRefGoogle Scholar
  26. 26.
    A.S. Rad, K. Ayub, Substitutional doping of zirconium-, molybdenum-, ruthenium-, and palladium: an effective method to improve nonlinear optical and electronic property of C20 fullerene. Comput. Theor. Chem. 1121, 68–75 (2017)CrossRefGoogle Scholar
  27. 27.
    A.S. Rad, S.M. Aghaei, E. Aali, M. Peyravi, Study on the electronic structure of Cr- and Ni-doped fullerenes upon adsorption of adenine: a comprehensive DFT calculation. Diamond Relat. Mater. 77, 116–121 (2017)CrossRefGoogle Scholar
  28. 28.
    A.S. Rad, S.M. Aghaei, E. Aali, M. Peyravi, M. Jahanshahi, Application of chromium-doped fullerene as a carrier for thymine and uracil nucleotides: a comprehensive DFT calculations. Appl. Organomet. Chem. Appl. Organomet. Chem. 32, 4070 (2018)CrossRefGoogle Scholar
  29. 29.
    V. Paromov, Z. Suntres, M. Smith, W.L. Stone, Sulfur mustard toxicity following dermal exposure; role of oxidative stress, and antioxidant therapy. J. Burns Wounds 7, 60–85 (2007)Google Scholar
  30. 30.
    G.K. Prasad, T.H. Mahato, B. Singh, P. Pandey, A.N. Rao, K. Ganesan, R. Vijayraghavan, Decontamination of sulfur mustard on manganese oxide nanostructures. AIChE J. 53, 1562–1567 (2007)CrossRefGoogle Scholar
  31. 31.
    A. Saxena, A. Sharma, A.K. Srivastava, B. Singh, P.K. Gutch, R.P. Semwal, Kinetics of adsorption of sulfur mustard on Al2O3 nanoparticles with and without impregnants. J. Chem. Technol. Biotechnol. 84, 1860–1872 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Kazemi, A.S. Rad, Sulfur mustard gas adsorption on ZnO fullerene-like nanocage: quantum chemical calculations. Superlattices Microstruct. 106, 122–128 (2017)CrossRefGoogle Scholar
  33. 33.
    M.B. Soltani, M.T. Javan, Z. Baei, Azmoodeh, Adsorption of chemical warfare agents over C 24 fullerene: Effects of decoration of cobalt. J. Alloy. Compd. 735, 2148–2161 (2018)CrossRefGoogle Scholar
  34. 34.
    S. Grimme, Density functional theory with London dispersion corrections. Wiley Interdiscip. Rev. 1, 211–228 (2011)Google Scholar
  35. 35.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, G 09, Revision D.01, Gaussian, Inc., Wallingford CT, (2009)Google Scholar
  36. 36.
    R. Zhiani, Adsorption of various types of amino acids on the graphene and boron-nitride nano-sheet, a DFT-D3 study. Appl. Surf. Sci. 409, 35–44 (2017)CrossRefGoogle Scholar
  37. 37.
    A.S. Rad, Application of B12N12 and B12P12 as two fullerene-like semiconductors for adsorption of halomethane: study of density functional theory. Semiconductors. 51, 134–138 (2017)CrossRefGoogle Scholar
  38. 38.
    A.S. Rad, Density functional theory study of the adsorption of MeOH and EtOH on the surface of Pt-decorated graphene. Physica E 83, 135–140 (2016)CrossRefGoogle Scholar
  39. 39.
    A.S. Rad, DFT study of hydrogen fluoride and sulfur trioxide interactions on the surface of Pt-decorated graphene. J. Theor. Appl. Phys. 10, 307–313 (2016)CrossRefGoogle Scholar
  40. 40.
    A.S. Rad, H. Pazoki, S. Mohseni, D. Zareyee, M. Peyravi, Surface study of platinum decorated graphene towards adsorption of NH3 and CH4. Mater. Chem. Phys. 182, 32–38 (2016)CrossRefGoogle Scholar
  41. 41.
    R.G. Parr, L.V. Szentpaly, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)CrossRefGoogle Scholar
  42. 42.
    T. Koopmans, Ordering of wave functions and eigen energies to the individual electrons of an atom. Physica, 1, 104–113 (1933)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical Injuries Research Center, System Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
  2. 2.Department of Chemical Engineering, South Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations