Sol–gel Synthesized Co-Doped Anatase TiO2 Nanoparticles: Structural, Optical, and Magnetic Characterization

  • Sh. A. Mansour
  • A. H. FarhaEmail author
  • M. F. Kotkata


A simple sol–gel method was used to synthesize cobalt doped TiO2 nanoparticles. TiO2 (titania) nanoparticles with Co doping concentration within the range 0, 2, 4, 6 and 8 mol% were prepared. For the purpose of samples characterization under the effect of changing the Co concentration on structural, optical, surface morphology and magnetic properties of the samples X-ray diffraction (XRD), Fourier transform infrared, UV/Vis/NIR diffuse reflectance spectroscopy (DRS), UV–visible absorption, transmission electron microscopy, and vibrating sample magnetometer (VSM) system techniques were employed. The XRD results confirmed the formation of TiO2 (titania) nanoparticles in anatase phase for all the undoped and Co-doped samples. The microstructure studies of the samples confirmed the incorporation of Co ions into the host titania matrix is occurring via substitution for the Ti sites. All the investigated samples exhibited a room temperature ferromagnetic behavior as observed by VSM measurements with non-monotonic dependence of FM characteristic parameters on Co concentration. The samples showed optical energy gap (Eg) values ~ 3.59 eV with an extension of the band gap into the visible light region with Co doping as confirmed by DRS study. The absorption band shows shift from 510 nm to 720 nm as Co concentration in the samples increased.


Sol–gel processes Semiconductors Chemical synthesis Magnetic properties Magnetic measurements 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    S. Maensiri, P. Laokul, J. Klinkaewnarong, A simple synthesis and room-temperature magnetic behavior of Co-doped anatase TiO2 nanoparticles. J. Magn. Magn. Mater. 302, 448–453 (2006)CrossRefGoogle Scholar
  2. 2.
    T.C. Oliveira, E.F. Silva, TiO2 ceramics prepared using Pechini synthesis and laser sintering. Proc. Appl. Ceram. 12, 118–122 (2018)CrossRefGoogle Scholar
  3. 3.
    G.S. Mital, T. Manoj, A review of TiO2 nanoparticles. Chin. Sci. Bull. 56, 1639–1657 (2011)CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRefPubMedGoogle Scholar
  5. 5.
    S.A. Mansour, Non-isothermal crystallization kinetics of nano-sized amorphous TiO2 prepared by facile sonochemical hydrolysis route. Ceram. Int. 45, 2893–2898 (2019)CrossRefGoogle Scholar
  6. 6.
    N. Drăgan, M. Crişan, M. Răileanu, D. Crişan, A. Ianculescu, P. Oancea, S. Şomăcescu, L. Todan, N. Stănică, B. Vasile, The effect of Co dopant on TiO2 structure of sol-gel nanopowders used as photocatalysts. Ceram. Int. 40, 12273–12284 (2014)CrossRefGoogle Scholar
  7. 7.
    C. Khurana, O.P. Pandey, B. Chudasama, Synthesis of visible light-responsive cobalt-doped TiO2 nanoparticles with tunable optical band gap. J. Sol–Gel. Sci. Technol. 75, 424–435 (2015)CrossRefGoogle Scholar
  8. 8.
    Alamgir, W. Khan, S. Ahmad, M.M. Hassan, A.H. Naqv, Structural phase analysis, band gap tuning and fluorescence properties of Co doped TiO2 nanoparticles. Opt. Mater. 38, 278–285 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Kaushik, B. Dalela, S. Kumar, P.A. Alvi, S. Dalela, Role of Co doping on structural, optical and magnetic properties of TiO2. J. Alloys Compd. 552, 274–278 (2013)CrossRefGoogle Scholar
  10. 10.
    I. Ganesh, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications. Mater. Chem. Phys. 135, 220–234 (2012)CrossRefGoogle Scholar
  11. 11.
    F. Pacheco. M. González, A. Medina, S. Velumani, J.A. Ascencio, Structural analysis of cobalt titanate nanoparticles obtained by sol–gel process. Appl. Phys. A 78, 531–536 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Hon Lim, C. Ferraris, M. Schreyer, K. Shih, J.O. Leckie, T.J. White, The influence of cobalt doping on photocatalytic nano-titania: crystal chemistry and amorphicity. J. Sol. State Chem. 180, 2905–2915 (2007)CrossRefGoogle Scholar
  13. 13.
    R. Rahimi, E. Honarvar Fard, S. Saadati, M. Rabbani, Degradation of methylene blue via Co–TiO2 nano powders modified by meso-tetra(carboxyphenyl)porphyrin. J. Sol–Gel. Sci. Technol. 62, 351–356 (2012)CrossRefGoogle Scholar
  14. 14.
    K. Karthik, S. Kesava, K. Pandian, N. Suresh Kumar, Victor Jaya, Influence of dopant level on structural, optical and magnetic properties of Co-doped anatase TiO2 nanoparticles. App. Surf. Sci. 256, 4757–4760 (2010)CrossRefGoogle Scholar
  15. 15.
    S.S. Babu, C. Mohandass, A.S.V. Raj, R. Rajasabapathy, M.A. Dhale, Multiple approaches towards decolorization and reuse of a textile dye (VB-B) by a marine bacterium Shewanella decolorationis. Water Air Soil Pollut. 224, 1500 (2013) (12 pp)CrossRefGoogle Scholar
  16. 16.
    A.Y. Choi, C.-H. Han, Comparison of doping limits among sonochemically prepared metal-doped TiO2 nanopowders in view of physicochemical properties. Res. Chem. Intermed. 39, 1563–1569 (2013)CrossRefGoogle Scholar
  17. 17.
    G. Westin, K. Jansson, A. Pohl, M. Leideborg, All alkoxide sol–gel route to CoO–TiO2 nano-powders. J. Sol–Gel. Sci. Technol. 31, 25–29 (2004)CrossRefGoogle Scholar
  18. 18.
    K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J (Nat Sci) 42, 357–361 (2008)Google Scholar
  19. 19.
    P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gott. 26, 98–100 (1918)Google Scholar
  20. 20.
    J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst 11, 102–123 (1978)CrossRefGoogle Scholar
  21. 21.
    S. Maensiri, P. Laokul, S. Phokha, A simple synthesis and magnetic behavior of nanocrystalline Zn0.9Co0.1O powders by using Zn and Co acetates and polyvinyl pyrrolidone as precursors. J Magn Magn Mater 305, 381–387 (2006)CrossRefGoogle Scholar
  22. 22.
    D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008) (10 pp)CrossRefPubMedGoogle Scholar
  23. 23.
    Y.-Q. Li, S.-G. Mei, Y.-J. Byon, J.-L. Wang, G.-L. Zhang, Highly solar radiation reflective Cr2O3–3TiO2 orange nanopigment prepared by a polymer-pyrolysis method. ACS Sustainable Chemistry& Engineering 2, 318–321 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Zou, W. Zheng, TiO2@CoTiO3 complex green pigments with low cobalt content and tunable color properties. Ceram. Int. 42, 8198–8205 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Tang, H. Berger, P.E. Schmid, F. Lévy, G. Burri, Photoluminescence in TiO2 anatase single crystals. Solid State Commun. 87, 847–850 (1993)CrossRefGoogle Scholar
  26. 26.
    S. Mugundan, B. Rajamannan, G. Viruthagiri, N. Shanmugam, R. Gobi, P. Praveen, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique. Appl Nanosci 5, 449–456 (2015)CrossRefGoogle Scholar
  27. 27.
    B. Santara, P.K. Giri, S. Dhara, K. Imakita, M. Fujii, Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J Phys. D 47, 235304 (2014) (14 pp)CrossRefGoogle Scholar
  28. 28.
    N.H. Hong, A. Barla, J. Sakai, N.Q. Huon, Can undoped semiconducting oxides be ferromagnetic?. Phys Status Sol C 4, 4461–4466 (2007)CrossRefGoogle Scholar
  29. 29.
    Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, M. Grundmann, Room temperature ferromagnetism in ZnO films due to defects. Appl. Phys. Lett. 92, 082508 (2008) (3 pp)CrossRefGoogle Scholar
  30. 30.
    A.H. Farha, S.A. Mansour, M.F. Kotkata, Structural, optical, and magnetic study of dilute magnetic semiconducting Co-doped ZnO nanocrystals synthesized using polymer-pyrolysis route. J. Mater. Sci. 51, 9855–9864 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Sundaresan, C.N.R. Rao, Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today 4, 96–106 (2009)CrossRefGoogle Scholar
  32. 32.
    D. Kim, J. Hong, Y.R. Park, K.J. Kim, The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. J. Phys. 21, 195405 (2009) (4 pp)Google Scholar
  33. 33.
    A.K. Rumaiz, B. Ali, A. Ceylan, M. Boggs, T. Beebe, S.I. Shah, Experimental studies on vacancy induced ferromagnetism in undoped TiO2. Solid State Commun. 144, 334–338 (2007)CrossRefGoogle Scholar
  34. 34.
    C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, J.M.D. Coey, Cobalt-doped ZnO: a room temperature dilute magnetic semiconductor. Appl. Surf. Sci. 247, 493–496 (2005)CrossRefGoogle Scholar
  35. 35.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Materials/Solar Energy and Environmental Sustainability (AMSEES) Laboratory, Faculty of EngineeringMenoufia UniversityShebin El-KomEgypt
  2. 2.Semiconductors Technology Lab, Physics Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  3. 3.Physics Department, College of ScienceKing Faisal UniversityAl AhsaSaudi Arabia

Personalised recommendations