Nano-synthesis, Biological Efficiency and DNA Binding Affinity of New Homo-binuclear Metal Complexes with Sulfa Azo Dye Based Ligand for Further Pharmaceutical Applications

  • Fawaz A. Saad
  • Hoda A. El-GhamryEmail author
  • Mohammed A. Kassem
  • Abdalla M. Khedr


Five novel nanometric homo-binuclear complexes have been synthesized by the reaction of Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) salts with a new azo dye 4-(2,4-dihydroxy-phenylazo)-N-thiazol-2-yl-benzenesulfonamide (H2L) with the aim to develop neoteric antitumor drugs. H2L has been prepared by coupling of sulfathiazole with resorcinol in order to comprise the bioactivities of sulfonamide part and azo group in the formed metal complexes which greatly enhance their bio-efficiencies. The ligand and complexes have been fully characterized using various spectral and analytical techniques. The obtained data indicated a dibasic tetradentate nature of ligand which coordinated via deprotonated phenolic oxygen, one azo group nitrogen, N-atom of thiazole ring, and sulfonamide oxygen forming tetrahedral geometry around the central metal ions. XRD data confirmed the crystalline nature of ligand and amorphous nature of the complexes. TEM images proved nanometeric size of complexes particles. The data of antimicrobial screening revealed that metal complexes are more potent than the azo dye ligand against varies micro-organisms. Anticancer activities of all compounds were evaluated against human liver carcinoma cells (HepG-2) and breast carcinoma cells (MCF-7). Cu(II) complex showed the highest anticancer activity (IC50 = 23.6 µg/ml) against HepG-2 cells. Co(II) complex displayed the greatest anticancer activity (IC50 of 7.67 µg/ml) contra MCF-7 cells. Electronic absorption and viscosity studies proved that H2L and complexes interact with DNA by intercalation binding and electrostatic force groove binding modes, respectively. The results of this study ascertain that Cu(II) and Co(II) complexes are very favorable candidates for further applications in cancer therapy.


Nano-meter complexes Sulfathiazole Characterization Anticancer DNA binding 



This paper contains the results and findings of a research project that is funded by King Abdulaziz City for Science and Technology (KACST) Grant No. 37–175.

Supplementary material

10904_2019_1098_MOESM1_ESM.docx (311 kb)
Supplementary material 1 (DOCX 311 KB)


  1. 1.
    J. Feng, S. Zhang, W. Shi, Y. Zhang, Activity of sulfa drugs and their combinations against stationary phase B. burgdorferi in vitro. Antibiotics 6, 1–11 (2017)CrossRefGoogle Scholar
  2. 2.
    D. Das, N. Sahu, S. Mondal, S. Roy, P. Dutta, S. Gupta, T.K. Mondal, C. Sinha, Structures, antimicrobial activity, DNA interaction and molecular docking studies of sulfamethoxazolyl-azo-acetylacetone and its nickel(II) complex. Polyhedron 99, 77–86 (2015)CrossRefGoogle Scholar
  3. 3.
    J.-Y. Winum, A. Maresca, F. Carta, A. Scozzafava, C.T. Supuran, Poly pharmacology of sulfonamides: pazopanib, a multitargeted receptor tyrosine kinase inhibitor in clinical use, potently inhibits several mammalian carbonic anhydrases. Chem. Commun. 48, 8177–8179 (2012)CrossRefGoogle Scholar
  4. 4.
    G. Choquet-Kastylevsky, T. Vial, J. Descotes, Allergic adverse reactions to sulfonamides. Curr. Allergy Asthma Rep. 2, 16–25 (2002)CrossRefGoogle Scholar
  5. 5.
    G.C. Slatore, A.S. Tilles, Sulfonamide hypersensitivity. Immunol. Allergy Clin. N. Am. 24, 477–490 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Summan, A.E. Cribb, Novel non-labile covalent binding of sulfamethoxazole reactive metabolites to cultured human lymphoid cells. Chem. Biol. Interact. 142, 155–173 (2002)CrossRefGoogle Scholar
  7. 7.
    J.H. Al-Fahemi, A.M. Khedr, I. Althagafi, N.M. El-Metwaly, F.A. Saad, H.A. Katouah, Green synthesis approach for novel benzenesulfonamide nanometer complexes with elaborated spectral, theoretical and biological treatments. Appl. Organomet. Chem.32, e4460 (2018)CrossRefGoogle Scholar
  8. 8.
    E.M. Mabrouk, K.A. Al-Omary, A.S. Al-Omary, E.H. El-Mossalamy, Electrochemical and spectral studies of some sulfa drug azo dyes and their metal complexes in aqueous solution. J. Adv. Chem. 14, 6021–6032 (2018)CrossRefGoogle Scholar
  9. 9.
    Z.H. Chohan, H.A. Shad, Sulfonamide-derived compounds and their transition metal complexes: synthesis, biological evaluation and X-ray structure of 4 –bromo-2-[(E)-{4-[(3,4-dimethylisoxazol-5 yl)sulfamoyl]phenyl}-iminiomethyl]phenolate. Appl. Organometal. Chem. 25, 591–600 (2011)CrossRefGoogle Scholar
  10. 10.
    M.S. Iqbal, A.H. Khan, B.A. Loothar, I.H. Bukhari, Effect of derivatization of sulfamethoxazole and trimethoprim with copper and zinc on their medicinal value. Med. Chem. Res. 18, 31–42 (2009)CrossRefGoogle Scholar
  11. 11.
    F.A. Saad, J.H. Al-Fahemi, H. El-Ghamry, A.M. Khedr, M.G. Elghalban, N.M. El-Metwaly, Elaborated spectral, modeling, QSAR, docking, thermal, antimicrobial and anticancer activity studies for new nanosized metal ion complexes derived from sulfamerazineazo dye. J. Ther. Anal.Calori. 131, 1249–1267 (2018)CrossRefGoogle Scholar
  12. 12.
    P. Rani, K.V. Srivastava, A. Kumar, Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem. 39, 449–452 (2004)CrossRefGoogle Scholar
  13. 13.
    M. Azam, S.I. Al-Resayes, S.M. Wabaidur, M. Altaf, B. Chaurasia, M. Alam, S.N. Shukla, P. Gaur, N.T.M. Albaqami, M.S. Islam, S. Park, Synthesis, structural characterization and antimicrobial activity of Cu(II) and Fe(III) complexes incorporating azo-azomethine ligand. Molecules 23, 1–13 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Tonelli, I. Vazzana, B. Tasso, V. Boido, F. Sparatore, M. Fermeglia, S.M. Paneni, P. Posocco, S. Pricl, P. Colla, C. Ibba, B. Secci, G. Collu, R. Loddo, Antiviral and cytotoxic activities of aminoarylazo compounds and aryltriazene derivatives. Bioorg. Med. Chem. 17, 4425–4440 (2009)CrossRefGoogle Scholar
  15. 15.
    K.K. Upadhyay, S. Upadhyay, A. Kumar, K. Thapliyal, Synthesis, crystal structures and studies on Hg2+ sensing by the diazo derivatives of sulfathiazole and Sulfamethoxazole. J. Sulfur Chem. 33, 573–582 (2012)CrossRefGoogle Scholar
  16. 16.
    G.G. Mohamed, M.A.M. Gad-Elkareem, Synthesis, characterization and thermal studies on metal complexes of new azo compounds derived from sulfa drugs. Spectrochim. Acta A 68, 1382–1387 (2007)CrossRefGoogle Scholar
  17. 17.
    H. Cetisli, M. Karakus, E. Erdem, H. Deligoez, Synthesis, metal complexation and spectroscopic characterization of three new azo compounds. J. Incl. Phen. Macrocycl. Chem. 42, 187–191 (2002)CrossRefGoogle Scholar
  18. 18.
    M.A. Ibrahim, Heterocyclo-substituted sulfa drugs: Part XI. Novel biologically active N-(piperidino-, morpholino-, piperazino-) dithiocarbamyl-azo dyes and their chelates. Phosphorus Sulfur Silicon Relat. Elem. 163, 219–251 (2000)Google Scholar
  19. 19.
    F.A. Saad, A.M. Khedr, Greener solid state synthesis of nano-sized mono and homo bi-nuclear Ni(II), Co(II) Mn(II), Hg(II), Cd(II) and Zn(II) complexes with new sulfa ligand as a potential antitumour and antimicrobial agents. J. Mol. Liq. 231, 572–579 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Li, G.-H. Lee, S.-M. Peng, The first one-dimensional coordination polymer containing O–H⋯F–Ni hydrogen bonding: crystal structure of [Ni3(dpa)4F2][Ni3(dpa)4(H2O)2](BF4)2·2CH3OH. Inorg. Chem. Commun. 6, 1–4 (2003)CrossRefGoogle Scholar
  21. 21.
    R.M. Issa, A.M. Khedr, A. Tawfik, Binuclear mixed metal complexes of V(IV), Mo(III), and U(VI) o-cresolphthalein complexonates with other metal ions. Synth. React. Inorg. Met.-Org. Chem. 34, 1087–1104 (2004)CrossRefGoogle Scholar
  22. 22.
    P. Nordell, P. Lincoln, Mechanism of DNA threading intercalation of binuclear Ru complexes: uni- or bimolecular pathways depending on ligand structure and binding density. J. Am. Chem. Soc. 127, 9670–9671 (2005)CrossRefGoogle Scholar
  23. 23.
    A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 111, 3051–3058 (1989)CrossRefGoogle Scholar
  24. 24.
    B. Macías, M.V. Villa, R. Lapresa, G. Alzuet, J. Hernández-Gil, F. Sanz, Mn(II) complexes with sulfonamides as ligands: DNA interaction studies and nuclease activity. J. Inorg. Biochem. 115, 64–71 (2012)CrossRefGoogle Scholar
  25. 25.
    T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and antitumor activity assays. J. Immunol. Methods 65, 55–63 (1983)CrossRefGoogle Scholar
  26. 26.
    S.M. Gomha, S.M. Riyadh, E.A. Mahmmoud, M.M. Elaasser, Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst. Chem. Heterocycl. Comp. 51, 1030–1038 (2015)CrossRefGoogle Scholar
  27. 27.
    A.C. Scott, Laboratory Control of Antimicrobial therapy. In: J.G et al. eds. Practical Medical Microbiology, 13th edn. (Churchill Livingestone, Edinburgh, 1981)Google Scholar
  28. 28.
    M. Gaber, N.A. El-Wakiel, H. El-Ghamry, S.K. Fathalla, Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. J. Mol. Struct. 1076, 251–261 (2014)CrossRefGoogle Scholar
  29. 29.
    W.J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971)CrossRefGoogle Scholar
  30. 30.
    K. Nakamoto, Infrared spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986)Google Scholar
  31. 31.
    K.Y. El-Baredie, Preparation and characterization of sulfadiazine schiff base complexes of Co(II), Ni(II), Cu(II), and Mn(II). Monatsh. Chem. 136, 1139–1155 (2005)CrossRefGoogle Scholar
  32. 32.
    K. El-Baradie, R. El-Sharkawy, H. El-Ghamry, K. Sakai, Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfa drug azo dyes and their application for wastewater treatment. Spectrochim. Acta A 121, 180–187 (2014)CrossRefGoogle Scholar
  33. 33.
    G.Q. Zhong, J. Shen, Q.Y. Jiang, Y.Q. Jia, M.J. Chen, Z.P. Zhang, Synthesis, characterization and thermal decomposition of SbIII-M-SbIII type trinuclear complexes of ethylenediamine-N, N, N′, N′-tetraacetate (M: Co(II), La(III), Nd(III), Dy(III)).J. Therm. Anal. Calorim. 92, 607–616 (2008)CrossRefGoogle Scholar
  34. 34.
    J.R. Allan, W.C. Geddes, C.S. Hindle, A.E. Orr, Thermal analysis studies on pyridine carboxylic acid complexes of zinc(II). Thermochim. Acta C 153, 249–256 (1989)CrossRefGoogle Scholar
  35. 35.
    M. Badea, A. Emandi, D. Marinescu, E. Cristurean, R. Olar, A. Braileanu, P. Budrugeac, E. Segal, Thermal stability of some azo-derivatives and their complexes. J. Therm. Anal. Calorim. 72, 525–531 (2033)CrossRefGoogle Scholar
  36. 36.
    S. Gupta, S. Pal, A.K. Barik, A. Hazra, S. Roy, T.N. Mandal, S.-M. Peng, G.-H. Lee, M.Salah El Fallah, J. Tercero, S.K. Kar, Synthesis, characterization and magnetostructural correlation studies on three binuclear copper complexes of pyrimidine derived Schiff base ligands. Polyhedron 27, 2519–2528 (2008)CrossRefGoogle Scholar
  37. 37.
    P.N. Patel, D.J. Patel, H.S. Patel, Synthesis, spectroscopic, thermal and biological aspects of drug-based copper(II) complexes. Appl. Organomet. Chem. 25, 454–463 (2011)CrossRefGoogle Scholar
  38. 38.
    A.A. Osowole, E.J. Akpan, Synthesis, spectroscopic characterisation, in-vitro anticancer and antimicrobial activities of some metal(ii) complexes of 3-{4, 6-dimethoxy pyrimidinyl) iminomethyl naphthalen-2-ol. Eur. J. Appl. Sci. 4, 14–20 (2012)Google Scholar
  39. 39.
    M.M. Al-Ne’aimi, M.M. Al-Khuder, Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties. Spectrochim. Acta A 105, 365–373 (2013)CrossRefGoogle Scholar
  40. 40.
    D.X. West, A. Nassar, F.A. El-Saied, M.I. Ayad, Nickel(II) complexes of 2-aminoacetophenone N(4)-substituted thiosemicarbazones. Transit. Met. Chem. 23, 423–427 (1998)CrossRefGoogle Scholar
  41. 41.
    W. Al Zoubi, A.A.S. Al-Hamdani, S.D. Ahmed, Y.G. Ko, Synthesis, characterization, and biological activity of Schiff bases metal complexes. J. Phys. Org. Chem. 31, 3752–3759 (2018)CrossRefGoogle Scholar
  42. 42.
    D.N. Kumar, B.S. Garg, Synthesis and spectroscopic studies of complexes of zinc(II) with N2O2 donor groups. Spectrochim. Acta A 64, 141–147 (2006)CrossRefGoogle Scholar
  43. 43.
    T.M.A. Ismail, Mononuclear and binuclear Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of schiff-base ligands derived from 7-formyl-8-hydroxyquinoline and diaminonaphthalenes. J. Coord. Chem. 58, 141–151 (2005)CrossRefGoogle Scholar
  44. 44.
    A.A. Fahem, Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation. Spectrochim. Acta A 88, 10–22 (2012)CrossRefGoogle Scholar
  45. 45.
    J.S. Ritch, T. Chivers, K. Ahmad, M. Afzaal, P. O’Brien, Synthesis, structures, and multinuclear NMR spectra of tin(II) and lead(II) complexes of tellurium-containing imidodiphosphinate ligands: preparation of two morphologies of phase-pure PbTe from a single-source precursor. Inorg. Chem. 49, 1198–1205 (2010)CrossRefGoogle Scholar
  46. 46.
    F.A. Saad, M.G. Elghalban, N. El-Metwaly, H. El-Ghamry, A.M. Khedr, Density functional theory/B3LYP study of nanometric 4-(2,4-dihydroxy-5-formylphen-1-ylazo)-N-(4-methylpyrimidin-2-yl)benzenesulfonamide complexes: quantitative structure–activity relationship, docking, spectral and biological investigations. Appl. Organomet. Chem. 31, 3721–3735 (2017)CrossRefGoogle Scholar
  47. 47.
    J.K. Hui, M.J. MacLachlan, Metal-containing nanofibers via coordination chemistry. Coord. Chem. Rev. 254, 2363–2390 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Salimi, J.R. Halla, S. Soltanian, Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity. Biophys. Chem. 130, 122–131 (2007)CrossRefGoogle Scholar
  49. 49.
    A.S. Sultan, H. Brim, Z.A. Sherif, Co-over expression of Janus kinase 2 and signal transducer and activator of transcription 5a promotes differentiation of mammary cancer cells through reversal of epithelial–mesenchymal transition. Cancer Sci. 2, 272–279 (2008)CrossRefGoogle Scholar
  50. 50.
    S.H. Etaiw, S.A. Amer, M.M. El-Bendary, A Mixed valence copper cyanide 3D-supramolecular coordination polymer containing 1,10-phenathorline ligand as a potential antitumor agent, effective catalyst and luminescent material. J. Inorg. Organomet. Polym Mater. 21, 662–669 (2011)CrossRefGoogle Scholar
  51. 51.
    A.F. Shoair, A.A. El-Bindary, N.A. El-Ghamaz, G.N. Rezk, Synthesis, characterization, DNA binding and antitumor activities of Cu(II) complexes. J. Mol. Liq. 269, 619–638 (2018)CrossRefGoogle Scholar
  52. 52.
    E.A. Bakr, G.B. Al-Hefnawy, M.K. Awad, H.H. Abd-Elatty, M.S. Youssef, New Ni (II), Pd (II) and Pt (II) complexes coordinated to azo pyrazolone ligand with a potent anti-tumor activity: synthesis, characterization, DFT and DNA cleavage studies. Appl. Organomet. Chem. 32, e4104 (2018)CrossRefGoogle Scholar
  53. 53.
    X. Riera, V. Moreno, C.J. Ciudad, V. Noe, M. Font-Bardía, X. Solans, Complexes of Pd(II) and Pt(II) with 9-aminoacridine: reactions with DNA and study of their antiproliferative activity. Bioinorg. Chem. Appl. 2007, 1–15 (2007)Google Scholar
  54. 54.
    M. Gaber, A.M. Khedr, M. Elsharkawy, Characterization and thermal studies of nano-synthesized Mn(II), Co(II), Ni(II) and Cu(II) complexes with adipohydrazone ligand as new promising antimicrobial and antitumor agents. Appl. Organomet. Chem. 31, 3885–3898 (2017)CrossRefGoogle Scholar
  55. 55.
    W.H. Mahmoud, F.N. Sayed, G.G. Mohamed, Azo dye with nitrogen donor sets of atoms and its metal complexes: synthesis, characterization, DFT, biological, anticancer and Molecular docking studies. Appl. Organomet. Chem. 32, e4347 (2018)CrossRefGoogle Scholar
  56. 56.
    A. Kulkarni, S.A. Patil, P.S. Badami, Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La(III), Th(IV) and VO(IV) complexes with Schiff bases of coumarin derivatives. Eur. J. Med. Chem. 44, 2904–2912 (2009)CrossRefGoogle Scholar
  57. 57.
    K.N. Thimmaiah, W.D. Lloyd, G.T. Chandrappa, Stereochemistry and fungi toxicity of complexes of p-anisaldehydethiosemicarbazone with Mn(II), Fe(II), Co(II) and Ni(II). Inorg. Chim. Acta 106, 81–83 (1985)CrossRefGoogle Scholar
  58. 58.
    M.A. Phanib, S.D. Dhumwad, Synthesis, characterization and biological studies of CoII, NiII, CuII and ZnII complexes of Schiff bases derived from 4-substituted carbostyrils[quinolin2(1H)-ones]. Trans. Met. Chem. 32, 1117–1125 (2007)CrossRefGoogle Scholar
  59. 59.
    M.I. Abou-Dobara, A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, S.M. Morgan, Thermal properties, antimicrobial activity of azo complexes and ultrastructure study of some affected bacteria. J. Microbial. Biochem. Technol. S3, 1–13 (2014)Google Scholar
  60. 60.
    T. Hirohama, Y. Kuranuki, E. Ebina, T. Sugizaki, H. Arii, M. Chikira, P.T. Selvi, M. Palaniandavar, Copper(II) complexes of 1,10-phenanthroline-derived ligands: studies on DNA binding properties and nuclease activity. J. Inorg. Biochem. 99, 1205–1219 (2005)CrossRefGoogle Scholar
  61. 61.
    T.R. Li, Z.Y. Yang, B.D. Wang, D.D. Qin, Synthesis, characterization, antioxidant activity and DNA-binding studies of two rare earth(III) complexes with naringenin-2-hydroxy benzoyl hydrazone ligand. Eur. J. Med. Chem. 43, 1688–1695 (2008)CrossRefGoogle Scholar
  62. 62.
    N. Chitrapriya, V. Mahalingam, M. Zeller, K. Natarajan, Synthesis, characterization, crystal structures and DNA binding studies of nickel(II) hydrazone complexes. Inorg. Chim. Acta 363, 3685–3693 (2010)CrossRefGoogle Scholar
  63. 63.
    F.H. Li, G.H. Zhao, H.X. Wu, H. Lin, X.X. Wu, S.R. Zhu, H.K. Lin, Synthesis, characterization and biological activity of lanthanum(III) complexes containing 2-methylene-1,10-phenanthroline units bridged by aliphatic diamines. J. Inorg. Biochem. 100, 36–43 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fawaz A. Saad
    • 1
  • Hoda A. El-Ghamry
    • 1
    • 2
    Email author
  • Mohammed A. Kassem
    • 1
    • 3
  • Abdalla M. Khedr
    • 1
    • 2
  1. 1.Department of Chemistry, Faculty of Applied ScienceUmm Al-Qura UniversityMakkahSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceTanta UniversityTantaEgypt
  3. 3.Chemistry Department, Faculty of ScienceBenha UniversityBenhaEgypt

Personalised recommendations