An Eco-friendly Synthesis of V2O5 Nanoparticles and Their Catalytic Activity for the Degradation of 4-Nitrophrnol

  • Samir Alghool
  • Hanan F. Abd El-Halim
  • Ayman M. MostafaEmail author


Vanadium pentoxide (V2O5) nanoparticles were synthesized using green, facile and cheap method using cotton fibres employed as an effective catalytic degradation material for hazards chemical materials. The synthesized nanoparticles have been characterized by UV–visible spectroscopy (UV–Vis), infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD showed crystalline orthorhombic structure of V2O5. The TEM micrographs showed spherical shape in a nanoscale range had average distribution of the diameter equal to 19.21 nm and their standard deviation equal to 3.57 nm. The UV–Vis study showed absorption peaks at 234, 265, and 317 nm which confirmed the formation of V2O5 structure. The energy band gap was calculated using Tauc equation. The catalytic activity performance of as-prepared sample was studied for catalytic degradation 4-nitrophenol. The catalytic degradation study showed that the reaction was first order reaction as it has been concluded from the linear regression. The prepared samples showed that 4-nitrophenol is converted completely to 4-aminophenol within 18 min.


Vanadate Nanomaterials TEM SEM Nitrophenol 



  1. 1.
    J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84 (2018)CrossRefGoogle Scholar
  2. 2.
    A. Awad, A.I. Abou-Kandil, I. Elsabbagh, M. Elfass, M. Gaafar, E. Mwafy, Polymer nanocomposites Part 1: structural characterization of zinc oxide nanoparticles synthesized via novel calcination method. J. Thermoplast. Composite Mater. 28, 1343–1358 (2015)CrossRefGoogle Scholar
  3. 3.
    A.I. Abou-Kandil, A. Awad, E. Mwafy, Polymer nanocomposites part 2: optimization of zinc oxide/high-density polyethylene nanocomposite for ultraviolet radiation `shielding. J. Thermoplast. Composite Mater. 28, 1583–1598 (2015)CrossRefGoogle Scholar
  4. 4.
    K. Yamani, R. Berenguer, A. Benyoucef, E. Morallón, Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J. Therm. Anal. Calorim. (2018). Google Scholar
  5. 5.
    F. Chouli, I. Radja, E. Morallon, A. Benyoucef, A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium (IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym. Composites 38, E254–E260 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Li, C. Tong, W. Ji, Z. Fu, Z. Wan, Q. Huang et al., Vanadium oxide post-treatment for enhanced photovoltage of printable perovskite solar cells. ACS Sustain. Chem. Eng. 7(2), 2619–2625 (2018)CrossRefGoogle Scholar
  7. 7.
    A.K. Prasad, S. Dhara, S. Dash, Selective NO2 sensor based on nanostructured vanadium oxide films. Sens. Lett. 15, 552–556 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Niu, M. Huang, P. Wang, J. Meng, X. Liu, X. Wang et al., Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 9, 128–138 (2016)CrossRefGoogle Scholar
  9. 9.
    R. Berenguer, M.O. Guerrero-Pérez, I. Guzmán, J. Rodriguez-Mirasol, T. Cordero, Synthesis of vanadium oxide nanofibers with variable crystallinity and V5+/V4+ ratios. ACS Omega 2, 7739–7745 (2017)CrossRefGoogle Scholar
  10. 10.
    Á Cunha, J. Martins, N. Rodrigues, F. Brito, Vanadium redox flow batteries: a technology review. Int. J. Energy Res. 39, 889–918 (2015)CrossRefGoogle Scholar
  11. 11.
    R.R. Langeslay, D.M. Kaphan, C.L. Marshall, P.C. Stair, A.P. Sattelberger, M. Delferro, Catalytic applications of vanadium: a mechanistic perspective. Chem. Rev. (2018). Google Scholar
  12. 12.
    Y. Zhang, J. Zheng, Y. Zhao, T. Hu, Z. Gao, C. Meng, Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor. Appl. Surf. Sci. 377, 385–393 (2016)CrossRefGoogle Scholar
  13. 13.
    W. Jin, B. Dong, W. Chen, C. Zhao, L. Mai, Y. Dai, Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes. Sens. Actuators B 145, 211–215 (2010)CrossRefGoogle Scholar
  14. 14.
    T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li et al., Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547–2552 (2010)CrossRefGoogle Scholar
  15. 15.
    B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng, Z. Shen et al., Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv. Mater. 21, 2436–2440 (2009)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, L. Pan, Y. Li, A. Gavrilyuk, Hydrogen photochromism in V2O5 layers prepared by the sol–gel technology. Appl. Surf. Sci. 314, 384–391 (2014)CrossRefGoogle Scholar
  17. 17.
    C. Ramana, O. Hussain, R. Pinto, C. Julien, Microstructural features of pulsed-laser deposited V2O5 thin films. Appl. Surf. Sci. 207, 135–138 (2003)CrossRefGoogle Scholar
  18. 18.
    J. He, T. Kunitake, A. Nakao, Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 15, 4401–4406 (2003)CrossRefGoogle Scholar
  19. 19.
    K. Hyde, H. Dong, J.P. Hinestroza, Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14, 615–623 (2007)CrossRefGoogle Scholar
  20. 20.
    C. Zhu, J. Xue, J. He, Controlled in-situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials. J. Nanosci. Nanotechnol. 9, 3067–3074 (2009)CrossRefGoogle Scholar
  21. 21.
    L.M. Liz-Marzán, Nanometals: formation and color. Mater. Today 7, 26–31 (2004)CrossRefGoogle Scholar
  22. 22.
    A. Shokri, Degradation of 4-nitrophenol from industrial wastewater by nano catalytic ozonation. Int. J. Nano Dimens. 7, 160–167 (2016)Google Scholar
  23. 23.
    R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51–59 (1999)CrossRefGoogle Scholar
  24. 24.
    D. Tryk, A. Fujishima, K. Honda, Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim. Acta 45, 2363–2376 (2000)CrossRefGoogle Scholar
  25. 25.
    B. Li, Y. Xu, G. Rong, M. Jing, Y. Xie, Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology 17, 2560 (2006)CrossRefGoogle Scholar
  26. 26.
    A.T. Raj, K. Ramanujan, S. Thangavel, S. Gopalakrishan, N. Raghavan, G. Venugopal, Facile synthesis of vanadium-pentoxide nanoparticles and study on their electrochemical, photocatalytic properties. J. Nanosci. Nanotechnol. 15, 3802–3808 (2015)CrossRefGoogle Scholar
  27. 27.
    Z. Strassberger, E.V. Ramos-Fernandez, A. Boonstra, R. Jorna, S. Tanase, G. Rothenberg, Synthesis, characterization and testing of a new V2O5/Al2O3–MgO catalyst for butane dehydrogenation and limonene oxidation. Dalton Trans. 42, 5546–5553 (2013)CrossRefGoogle Scholar
  28. 28.
    B. Anis, A. Mostafa, Z. El Sayed, A. Khalil, A. Abouelsayed, Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction. Opt. Laser Technol. 103, 367–372 (2018)CrossRefGoogle Scholar
  29. 29.
    A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, Synthesis of cadmium oxide nanoparticles by pulsed laser ablation in liquid environment. Optik 144, 679–684 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Fiermans, J. Vennik, Inelastic effects and structure in the auger electron emission spectra of V2O5 (010) and V (100) surfaces: Study of chemical shifts. Surf. Sci. 35, 42–62 (1973)CrossRefGoogle Scholar
  31. 31.
    F. Ongul, Solution-processed inverted organic solar cell using V2O5 hole transport layer and vacuum free EGaIn anode. Opt. Mater. 50, 244–249 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Aly, S. Mahmoud, N. El-Sayed, M. Kaid, Study on some optical properties of thermally evaporated V2O5 films. Vacuum 55, 159–163 (1999)CrossRefGoogle Scholar
  33. 33.
    N. Hassan, M.K. Khalaf, The Influence of RF power, pressure and substrate temperature on optical properties of RF Sputtered vanadium pentoxide thin films. Iraqi J. Phys. 16, 42–47 (2018)Google Scholar
  34. 34.
    A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, Au@ CdO core/shell nanoparticles synthesized by pulsed laser ablation in Au precursor solution. Appl. Phys. A 123, 774 (2017)CrossRefGoogle Scholar
  35. 35.
    M.S. Hasanin, A.M. Mostafa, E.A. Mwafy, O.M. Darwesh, Eco-friendly cellulose nano fibers via first reported Egyptian Humicola fuscoatra Egyptia X4: Isolation and characterization. Environ. Nanotechnol. Monit. Manag. 10:409–418 (2018)Google Scholar
  36. 36.
    R.-S. Chen, W.-C. Wang, C.-H. Chan, H.-P. Hsu, L.-C. Tien, Y.-J. Chen, Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition. Nanoscale Res Lett 8, 443 (2013)CrossRefGoogle Scholar
  37. 37.
    L.R. Bhat, S. Vedantham, U.M. Krishnan, J.B.B. Rayappan, A non-enzymatic two step catalytic reduction of methylglyoxal by nanostructured V2O5 modified electrode. Biosens. Bioelectron. 103, 143–150 (2018)CrossRefGoogle Scholar
  38. 38.
    S. Lv, J. Ding, H. Peng, G. Li, Facile synthesis of V2O5/TiO2 core–shell nanobelts. Transit. Met. Chem. 35, 809–813 (2010)CrossRefGoogle Scholar
  39. 39.
    J. Ding, H. Peng, G. Li, K. Chen, Conversion of V2O5· xH2O into orthorhombic V2O5 single-crystalline nanobelts. Mater. Lett. 64, 1562–1565 (2010)CrossRefGoogle Scholar
  40. 40.
    A.M. Darwish, W.H. Eisa, A.A. Shabaka, M.H. Talaat, Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment. Spectrochim. Acta Part A 153, 315–320 (2016)CrossRefGoogle Scholar
  41. 41.
    H. El-Saied, A.M. Mostafa, M.S. Hasanin, E.A. Mwafy, A.A. Mohammed, Synthesis of antimicrobial cellulosic derivative and its catalytic activity. J King Saud Univ. Sci. (2018). Google Scholar
  42. 42.
    W. Hu, B. Liu, Q. Wang, Y. Liu, Y. Liu, P. Jing et al., A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications. Chem. Commun. 49, 7596–7598 (2013)CrossRefGoogle Scholar
  43. 43.
    H. Gu, J. Wang, Y. Ji, Z. Wang, W. Chen, G. Xue, Facile and controllable fabrication of gold nanoparticles-immobilized hollow silica particles and their high catalytic activity. J. Mater. Chem. A 1, 12471–12477 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencePort Said UniversityPort SaidEgypt
  2. 2.Department of Pharmaceutical Chemistry, Faculty of PharmacyMisr International UniversityCairoEgypt
  3. 3.Spectroscopy Department, Physics DivisionNational Research CenterCairoEgypt

Personalised recommendations