Advertisement

Hexagonal Core–Shell SiO2[–MOYI]Cl–]Ag Nanoframeworks for Efficient Photodegradation of the Environmental Pollutants and Pathogenic Bacteria

  • Mohsen PadervandEmail author
  • Farnaz Asgarpour
  • Ali Akbari
  • Bagher Eftekhari Sis
  • Gerhard Lammel
Article
  • 36 Downloads

Abstract

Hexagonal core–shell SiO2[–MOYI]Cl–]Ag nanoframeworks were synthesized via surface modification of hexagonal silica nanoparticles prepared from perlite (EP) as a cheap and abundant raw material. The prepared samples were well characterized by X-ray diffraction powder (XRD), energy dispersive X-ray (EDX), diffuse reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) specific surface area analysis, fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The XRD patterns confirmed that Ag and AgCl crystalline phases were successfully loaded on the surface. The TEM images were also implied that the nanoparticles have hexagonal shape with the average size of 50–80 nm. Photocatalytic properties were evaluated by degradation of acid blue 92 (AB92), two semivolatile organic compounds (SVOCs) i.e., 4-methoxy-2nitrophenol (4Mx2Np) and 3-methyl-4-nitrophenol (3M4Np), and Staphylococcus aureus (S. a) gram positive bacteria under visible light. The kinetics and mechanism of the photocatalytic pathways were also studied and the results were discussed. According to the obtained results, the photocatalyst was incredibly able to degradethe contaminants under visible light. Recycling experiments described the high capacity of the prepared sample for the repeated treatment of wastewaters.The TEM images of the treated bacterial cell walls after the reaction time were also used to clarify the antibacterial activity of the samples.

Keywords

Photocatalyst Wastewater SiO2 AgCl Visible light 

Notes

Acknowledgements

This work has been supported by the Center for International Scientific Studies & Collaboration (CISSC).

References

  1. 1.
    A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)CrossRefGoogle Scholar
  2. 2.
    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nanophotocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, D.Q. Lima, I. Lee, F. Zaera, M. Chi, Y. Yin, A highly active titanium dioxide based visible light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. 123, 7226–7230 (2011)CrossRefGoogle Scholar
  4. 4.
    D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 18, 2807–2824 (2006)CrossRefGoogle Scholar
  5. 5.
    A. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, E. Jabbari, Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Struct. Nano-Objects 14, 19–48 (2018)CrossRefGoogle Scholar
  6. 6.
    K. Saravanan, K. Ananthanarayanan, P. Balaya, Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ. Sci. 3, 939–948 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Son, S.H. Hwang, C. Kim, J.Y. Yun, J. Jang, Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 4815–4820 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Padervand, M.R. Elahifard, R.V. Meidanshahi, S. Ghasemi, S. Haghighi, M.R. Gholami, Investigation of the antibacterial and photocatalytic properties of the zeolitic nanosized AgBr/TiO2 composites. Mater. Sci. Semicond. Process. 15, 73–79 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Li, P. Leung, L. Yao, Q. Song, E. Newton, Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 62, 58–63 (2006)CrossRefGoogle Scholar
  10. 10.
    A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Padervand, M. Tasviri, M.R. Gholami, Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite. Chem. Pap. 65, 280–288 (2011)CrossRefGoogle Scholar
  12. 12.
    E. Pakdel, W.A. Daoud, Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica. J. Colloid Interface Sci. 401, 1–7 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Dong, B. Tian, C. Zeng, T. Li, T. Wang, J. Zhang, Ecofriendly synthesis and photocatalytic activity of uniform cubic Ag@AgCl plasmonic photocatalyst. J. Phys. Chem. C 117, 213–220 (2012)CrossRefGoogle Scholar
  14. 14.
    G. Liu, L.-C. Yin, J. Wang, P. Niu, C. Zhen, Y. Xie, H.-M. Cheng, A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ. Sci. 5, 9603–9610 (2012)CrossRefGoogle Scholar
  15. 15.
    D. Barpuzary, Z. Khan, N. Vinothkumar, M. De, M. Qureshi, Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation. J. Phys. Chem. C 116, 150–156 (2011)CrossRefGoogle Scholar
  16. 16.
    W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, Q. Xu, Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. J. Mater. Chem. 22, 4050–4055 (2012)CrossRefGoogle Scholar
  17. 17.
    S.H. Kang, W. Lee, H.S. Kim, Effects of CdS sensitization on single crystalline TiO2 nanorods in photoelectrochemical cells. Mater. Lett. 85, 74–76 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Padervand, Facile synthesis of the novel Ag [1-butyl 3-methyl imidazolium] Br nanospheres for efficient photodisinfection of wastewaters. Chem. Eng. Commun. 203, 1532–1537 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Padervand, Visible-light photoactive Ag–AgBr/α-Ag3VO4 nanostructures prepared in a water-soluble ionic liquid for degradation of wastewater. Appl. Nanosci. 6, 1119–1126 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Padervand, Carboxymethyl cellulose-and fluorapatite-coated silver [orthophosphate-bromide] nanostructures for photodegradation of an azo dye from the textile industry. Kinet. Catal. 58, 493–498 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Tang, Z. Jiang, G. Xing, A. Li, P.D. Kanhere, Y. Zhang, T.C. Sum, S. Li, X. Chen, Z. Dong, Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon induced electron transfer processes. Adv. Func. Mater. 23, 2932–2940 (2013)CrossRefGoogle Scholar
  22. 22.
    M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. J. Am. Chem. Soc. 129, 9552–9553 (2007)CrossRefGoogle Scholar
  23. 23.
    M. Padervand, Well-supported Ag3VO4–AgBr nanostructures for visible light-driven treatment of wastewaters. Prog. React. Kinet. Mech. 42, 251–258 (2017)CrossRefGoogle Scholar
  24. 24.
    F. Zhang, S. Lu, P. Yang, C. Jia, K. Matras-Postolek, Synthesis of SiO2@ AgCl and SiO2@Ag3PO4 nanocomposites via replacing reaction in situ towards enhanced photocatalysis. J. Nanosci. Nanotechnol. 16, 9794–9799 (2016)CrossRefGoogle Scholar
  25. 25.
    X. Xu, M. Wang, Y. Pei, C. Ai, L. Yuan, SiO2@ Ag/AgCl: a low-cost and highly efficient plasmonic photocatalyst for degrading rhodamine B under visible light irradiation. RSC Adv. 4, 64747–64755 (2014)CrossRefGoogle Scholar
  26. 26.
    L. Lucattini, G. Poma, A. Covaci, J. de Boer, M. Lamoree, P. Leonards, A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere 201, 466–482 (2018)CrossRefGoogle Scholar
  27. 27.
    W.A. Buttemer, P.G. Story, K.J. Fildes, R.V. Baudinette, L.B. Astheimer, Fenitrothion, an organophosphate, affects running endurance but not aerobic capacity in fat-tailed dunnarts (Sminthopsis crassicaudata). Chemosphere 72, 1315–1320 (2008)CrossRefGoogle Scholar
  28. 28.
    M. Kitulagodage, J. Isanhart, W.A. Buttemer, M.J. Hooper, L.B. Astheimer, Fipronil toxicity in northern bobwhite quail Colinus virginianus: reduced feeding behaviour and sulfone metabolite formation. Chemosphere 83, 524–530 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Kumar, G. Kaushik, M.A. Dar, S. Nimesh, U.J. Lopez-Chuken, J.F. Villarreal-Chiu, Microbial degradation of organophosphate pesticides: a review. Pedosphere 28, 190–208 (2018)CrossRefGoogle Scholar
  30. 30.
    B. Bhushan, S.K. Samanta, A. Chauhan, A.K. Chakraborti, R.K. Jain, Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem. Biophys. Res. Commun. 275, 129–133(2000)CrossRefGoogle Scholar
  31. 31.
    G. Dingemans, C. Van Helvoirt, D. Pierreux, W. Keuning, W. Kessels, Plasma-assisted ALD for the conformal deposition of SiO2: process, material and electronic properties. J. Electrochem. Soc. 159, H277–H285 (2012)CrossRefGoogle Scholar
  32. 32.
    A.M. Azzam, M.A. Shenashen, M.M. Selim, H. Yamaguchi, I.M. El-Sewify, S. Kawada, A.A. Alhamid, S.A. El-Safty, Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic (V) and chromium (VI) from aqueous solution. J. Phys. Chem. Solids 109, 78–88 (2017)CrossRefGoogle Scholar
  33. 33.
    M.Y. Emran, M.A. Shenashen, A.A. Abdelwahab, M. Abdelmottaleb, S.A. El-Safty, Facile synthesis of microporous sulfur-doped carbon spheres as electrodes for ultrasensitive detection of ascorbic acid in food and pharmaceutical products. New J. Chem. 42, 5037–5044 (2018)CrossRefGoogle Scholar
  34. 34.
    N. Akhtar, M.Y. Emran, M.A. Shenashen, H. Khalifa, T. Osaka, A. Faheem, T. Homma, H. Kawarada, S.A. El-Safty, Fabrication of photo-electrochemical biosensors for ultrasensitive screening of mono-bioactive molecules: the effect of geometrical structures and crystal surfaces. J. Mater. Chem. B 5, 7985–7996 (2017)CrossRefGoogle Scholar
  35. 35.
    M.Y. Emran, M. Mekawy, N. Akhtar, M.A. Shenashen, I.M. EL-Sewify, A. Faheem, S.A. El-Safty, Broccoli-shaped biosensor hierarchy for electrochemical screening of noradrenaline in living cells. Biosens. Bioelectron. 100, 122–131 (2018)CrossRefGoogle Scholar
  36. 36.
    S.A. El-Safty, M. Shenashen, M. Ismael, M. Khairy, M.R. Awual, Mesoporous aluminosilica sensors for the visual removal and detection of Pd (II) and Cu (II) ions. Microporous Mesoporous Mater. 166, 195–205 (2013)CrossRefGoogle Scholar
  37. 37.
    M.A. Shenashen, N. Akhtar, M.M. Selim, W.M. Morsy, H. Yamaguchi, S. Kawada, A.A. Alhamid, N. Ohashi, I. Ichinose, A.S. Alamoudi, Effective, low-cost recovery of toxic arsenate anions from water by using hollow sphere geode traps. Chemistry 12, 1952–1964 (2017)Google Scholar
  38. 38.
    M.A. Shenashen, S. Kawada, M.M. Selim, W.M. Morsy, H. Yamaguchi, A.A. Alhamid, N. Ohashi, I. Ichinose, S.A. El-Safty, Bushy sphere dendrites with husk-shaped branches axially spreading out from the core for photo-catalytic oxidation/remediation of toxins. Nanoscale 9, 7947–7959 (2017)CrossRefGoogle Scholar
  39. 39.
    C.-J. Chung, H.-I. Lin, C.-M. Chou, P.-Y. Hsieh, C.-H. Hsiao, Z.-Y. Shi, J.-L. He, Inactivation of Staphylococcus aureus and Escherichia coli under various light sources on photocatalytic titanium dioxide thin film. Surf. Coat. Technol. 203, 1081–1085 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohsen Padervand
    • 1
    • 2
    Email author
  • Farnaz Asgarpour
    • 1
  • Ali Akbari
    • 1
    • 3
  • Bagher Eftekhari Sis
    • 1
    • 4
  • Gerhard Lammel
    • 5
    • 6
  1. 1.Department of ChemistryUniversity of MaraghehMaraghehIran
  2. 2.Center for International Scientific Studies and Collaboration (CISSC)Ministry of Science, Research and Technology (MSRT)TehranIran
  3. 3.Cellular and Molecular Research Center, Cellular and Molecular Medicine InstituteUrmia University of Medical SciencesUrmiaIran
  4. 4.Department of ChemistrySharif University of TechnologyTehranIran
  5. 5.Max Planck Institute for Chemistry, Multiphase Chemistry DepartmentMainzGermany
  6. 6.Masaryk University, Research Centre for Toxic Compounds in the EnvironmentBrnoCzech Republic

Personalised recommendations