Advertisement

Effective Removal of Antibacterial Drugs from Aqueous Solutions Using Porous Metal–Organic Frameworks

  • Fangfang Chai
  • Xudong ZhaoEmail author
  • Huihui Gao
  • Yuwei Zhao
  • Hongliang Huang
  • Zhuqing GaoEmail author
Article
  • 126 Downloads

Abstract

Effective removal of antibacterial drugs attracts more and more attentions with the rapid development of pharmacy industry, while still facing large challenge in removal efficiency to date. Herein, porous MIL-101 and SO3H-MIL-101 were systematically studied for their adsorption performances toward two common antibacterial drugs, gemifioxacin mesylate (GEM) and moxifloxacin hydrochloride (MOX). It was found that SO3H-MIL-101 can exhibit high adsorption capacities of 528 mg g−1 and 447 mg g−1 for GEM and MOX at natural pH respectively, superior to those of MIL-101 and other common MOFs-based adsorbents. The adsorption kinetics study indicates that the adsorption onto SO3H-MIL-101 follows pseudo-second-order model. Furthermore, it was found that the adsorption capacity of SO3H-MIL-101 increased at pH range of 2.0–7.0 and decreased at pH range of 7.0–10.0. Further study indicates that the two MOFs can be easily regenerated even after four cycles. Mechanism analysis demonstrates that surface potentials of the MOFs play critical effects on the adsorption processes for the amphipathic drugs and the introduction of –SO3H groups can effectively regulate the adsorption performance of the MOF. This work may provide an effective approach to modify the adsorption behaviour of the MOFs.

Keywords

Metal–organic frameworks Adsorptive removal Antibacterial drugs Electrostatic interaction 

Notes

Acknowledgements

This work was supported by Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology (Nos. 20162012 and 20182020), Natural Science Foundation of China (No. 21606007) and the Science and Technology Plans of Tianjin (Nos. 17PTSYJC00040 and 18PTSYJC00180).

References

  1. 1.
    X. Zhao, Y. Wei, H. Zhao, Z. Gao, Y. Zhang, L. Zhi, Y. Wang, H. Huang, Functionalized metal-organic frameworks for effective removal of rocephin in aqueous solutions. J. Colloid Interface Sci. 514, 234–239 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Li, X. Zhang, Y. Huang, Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J. Hazard. Mater. 321, 711–719 (2017)CrossRefGoogle Scholar
  3. 3.
    J.L. Martinez, Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 157, 2893–2902 (2009)CrossRefGoogle Scholar
  4. 4.
    B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li, H.-C. Zhou, Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 138, 6204–6216 (2016)CrossRefGoogle Scholar
  5. 5.
    M. Zaghdoudi, F. Fourcade, I. Soutrel, D. Floner, A. Amrane, H. Maghraoui-Meherzi, F. Geneste, Direct and indirect electrochemical reduction prior to a biological treatment for dimetridazole removal. J. Hazard. Mater. 335, 10–17 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Zhou, M. Li, L. Luo, H. Gao, F. Zheng, Photodegradation of moxifloxacin hydrochloride solutions under visible light irradiation: identification of products and the effect of pH on their formation. AAPS. PharmSciTech. 19, 1182–1190 (2018)CrossRefGoogle Scholar
  7. 7.
    X.V. Doorslaer, P.M. Heynderickx, K. Demeestere, K. Devevere, H.V. Langenhove, J. Dewulf, TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin operational variables and scavenger study. Appl. Catal. B Environ. 111–112, 150–156 (2012)CrossRefGoogle Scholar
  8. 8.
    X.V. Doorslaer, K. Demeestere, P.M. Heynderickx, H.V. Langenhove, J. Dewulf, UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Appl. Catal. B Environ. 101, 540–547 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013)CrossRefGoogle Scholar
  10. 10.
    H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012)CrossRefGoogle Scholar
  11. 11.
    X. Kong, H. Deng, F. Yan, J. Kim, J.A. Swisher, B. Smit, O.M. Yaghi, J.A. Reimer, Mapping of functional groups in metal–organic frameworks. Science 341, 882 (2013)CrossRefGoogle Scholar
  12. 12.
    P. Szuromi, Mesoporous metal–organic frameworks. Science 359, 172–173 (2018)Google Scholar
  13. 13.
    C. Duan, J. Huo, F. Li, M. Yang, H. Xi, Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks by a versatile cooperative template strategy. J. Mater. Sci. 53, 16276–16287 (2018)CrossRefGoogle Scholar
  14. 14.
    X. Zhao, H. Zhao, W. Dai, Y. Wei, Y. Wang, Y. Zhang, L. Zhi, H. Huang, Z. Gao, A metal-organic framework with large 1-D channels and rich –OH sites for high-efficiency chloramphenicol removal from water. J. Colloid Interface Sci. 526, 28–34 (2018)CrossRefGoogle Scholar
  15. 15.
    Y. Han, H. Zheng, K. Liu, H. Wang, H. Huang, L.-H. Xie, L. Wang, J.-R. Li, In-situ ligand formation-driven preparation of a heterometallic metal-organic framework for highly selective separation of light hydrocarbons and efficient mercury adsorption. ACS Appl. Mater. Interfaces 8, 23331–23337 (2016)CrossRefGoogle Scholar
  16. 16.
    X.-Y. Xu, C. Chu, H. Fu, X.-D. Du, P. Wang, W. Zheng, C.-C. Wang, Light-responsive UiO-66-NH2/Ag3PO4 MOF-nanoparticle composites for the capture and release of sulfamethoxazole. Chem. Eng. J. 350C, 436–444 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun. 9, 187 (2018)CrossRefGoogle Scholar
  18. 18.
    P.A. Kobielska, A.J. Howarth, O.K. Farha, S. Nayak, Metal-organic frameworks for heavy metal removal from water. Coordin. Chem. Rev. 358, 92–107 (2018)CrossRefGoogle Scholar
  19. 19.
    J.R. De Andrade, M.F. Oliveira, M.G.C. Da Silva, M.G.A. Vieira, Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind. Eng. Chem. Res. 57, 3103–3127 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Mon, R. Bruno, J. Ferrando-Soria, D. Armentano, E. Pardo, Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. J. Mater. Chem. A 6, 4912–4947 (2018)CrossRefGoogle Scholar
  21. 21.
    K.A. Cychosz, R. Ahmad, A.J. Matzger, Liquid phase separations by crystalline microporous coordination polymers. Chem. Sci. 1, 293–302 (2010)CrossRefGoogle Scholar
  22. 22.
    X. Zhao, K. Wang, Z. Gao, H. Gao, Z. Xie, X. Du, H. Huang, Reversing the dye adsorption and separation performance of metal-organic frameworks via introduction of –SO3H groups. Ind. Eng. Chem. Res. 56, 4496–4501 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Sarker, J.Y. Song, A.R. Jeong, K.S. Min, S.H. Jhung, Adsorptive removal of indole and quinoline from model fuel using adenine-grafted metal–organic framewors. J. Hazard. Mater. 344, 593–601 (2018)CrossRefGoogle Scholar
  24. 24.
    M.-X. Wu, Y.-W. Yang, Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Zha, J. Liu, Y.-L. Wong, Z. Xu, Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions. J. Mater. Chem. A 3, 3928–3934 (2015)CrossRefGoogle Scholar
  26. 26.
    D. Feng, Y. Xia, Comparisons of glyphosate adsorption properties of different functional Cr-based metal-organic frameworks. J. Sep. Sci. 41, 732–739 (2018)CrossRefGoogle Scholar
  27. 27.
    Z. Hasan, N.A. Khan, S.H. Jhung, Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. J. Eng. Chem. 284, 1406–1413 (2016)CrossRefGoogle Scholar
  28. 28.
    E. Haque, V. Lo, A.I. Minett, A.T. Harris, T.L. Church, Dichotomous adsorption behaviour of dyes on an amino-functionalised metal–organic framework, amino-MIL-101(Al). J. Mater. Chem. A 2, 193–203 (2014)CrossRefGoogle Scholar
  29. 29.
    X.-P. Luo, S.-Y. Fu, Y.-M. Du, J.-Z. Guo, B. Li, Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101. Micropor. Mesopor. Mater. 237, 268–274 (2017)CrossRefGoogle Scholar
  30. 30.
    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040 (2005)CrossRefGoogle Scholar
  31. 31.
    S. Bhattacharjee, C. Chena, W.S. Ahn, Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv. 4, 52500–52525 (2014)CrossRefGoogle Scholar
  32. 32.
    C. Mao, R.A. Kudla, F. Zuo, X. Zhao, L.J. Mueller, X. Bu, P. Feng, Anion stripping as a general method to create cationic porous framework with mobile anions. J. Am. Chem. Soc. 136, 7579–7582 (2014)CrossRefGoogle Scholar
  33. 33.
    G. Akiyama, R. Matsuda, H. Sato, M. Takata, S. Kitagawa, Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Adv. Mater. 23, 3294–3297 (2011)CrossRefGoogle Scholar
  34. 34.
    K. Munusamy, G. Sethia, D.V. Patil, S. Rallapalli, P.B. Somani, R.S. Bajaj, H.C.: Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): volumetric measurements and dynamic adsorption studies. Chem. Eng. J. 195–196, 359–368 (2012)CrossRefGoogle Scholar
  35. 35.
    P.K. Prabhakaran, J. Deschamps, Doping activated carbon incorporated composite MIL-101 using lithium: impact on hydrogen uptake. J. Mater. Chem. A 3, 7014–7021 (2015)CrossRefGoogle Scholar
  36. 36.
    W.-W. Jin, H.-J. Li, J.-Z. Zou, S.-Z. Zeng, Q.-D. Li, G.-Z. Xu, H.-C. Sheng, B.-B. Wang, Y.-H. Si, L. Yu, X.-R. Zeng, Conducting polymer-coated MIL-101/S composite with scale-like shell structure for improving Li–S batteries. RSC Adv. 8, 4786–4793 (2018)CrossRefGoogle Scholar
  37. 37.
    P. Mao, B. Qi, Y. Liu, L. Zhao, Y. Jiao, Y. Zhang, Z. Jiang, Q. Li, J. Wang, S. Chen, Y. Yang, AgII doped MIL-101 and its adsorption of iodine with high speed in solution. J. Solid State Chem. 237, 274–283 (2016)CrossRefGoogle Scholar
  38. 38.
    N.M. Mahmoodi, O. Masrouri, Cationic dye removal ability from multicomponent system by magnetic carbon nanotubes. J. Solut. Chem. 55, 1568–1583 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Zhao, D. Liu, H. Huang, W. Zhang, Q. Yang, C. Zhong, The stability and defluoridation performance of MOFs in fluoride solutions. Micropor. Mesopor. Mater. 185, 72–78 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical and Biological EngineeringTaiyuan University of Science and TechnologyTaiyuanChina
  2. 2.State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation MembranesTianjin Polytechnic UniversityTianjinChina

Personalised recommendations